Toric Surface Codes – Some New Observations

John B. Little

Department of Mathematics and Computer Science College of the Holy Cross

> HC Faculty Seminar September 8, 2011

くロト (過) (目) (日)

- Definitions
- History of Previous Work
- Some Examples
- Minkowski Sums
- 2 Generalized Toric Surface Codes
 - Motivating Example
 - Explanation
 - Factorizations For Polynomials in one variable
 - One Application
- 3 The Exceptional Triangle
 - Setting Up
 - Curves With Non-Trivial 3-Torsion
 - Role of Supersingular Curves

ヘロト 人間 ト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

Coding Theory Basics

 Goal: Want a provably effective way of constructing "good" linear codes over finite fields F_q: vector subspaces C of Fⁿ_q for given n

Definitions History of Previous Work Some Examples Minkowski Sums

Coding Theory Basics

- Goal: Want a provably effective way of constructing "good" linear codes over finite fields F_q: vector subspaces C of Fⁿ_q for given n
- "Good" code means: minimum distance d of the code is large (for given n and k = dim_{Fg} C)

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Definitions History of Previous Work Some Examples Minkowski Sums

Coding Theory Basics

- Goal: Want a provably effective way of constructing "good" linear codes over finite fields F_q: vector subspaces C of Fⁿ_q for given n
- "Good" code means: *minimum distance d* of the code is large (for given *n* and $k = \dim_{\mathbb{F}_q} C$)
- Minimum distance:

$$d = \min_{x \neq y \in C} \operatorname{wt}(x - y) = \min_{x \neq 0 \in C} \operatorname{wt}(x),$$

where wt(x) is the Hamming weight (number of nonzero entries) – related to error-correction capacity when information is encoded to elements of *C* and transmitted over a noisy channel.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Definitions History of Previous Work Some Examples Minkowski Sums

Toric Surface Codes – Original Definition

• $P \subset [0, q-2]^2 \subset \mathbb{R}^2$ an integer lattice polygon

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions History of Previous Work Some Examples Minkowski Sums

Toric Surface Codes – Original Definition

- $P \subset [0, q-2]^2 \subset \mathbb{R}^2$ an integer lattice polygon
- \mathbb{F}_q a finite field with primitive element α .

Definitions History of Previous Work Some Examples Minkowski Sums

Toric Surface Codes – Original Definition

- $P \subset [0, q-2]^2 \subset \mathbb{R}^2$ an integer lattice polygon
- \mathbb{F}_q a finite field with primitive element α .
- For $f \in \mathbb{Z}^2$ with $0 \le f_i \le q-2$, let $p_f = (\alpha^{f_1}, \alpha^{f_2})$ in $(\mathbb{F}_q^*)^2$.

<ロ> (四) (四) (三) (三) (三)

Definitions History of Previous Work Some Examples Minkowski Sums

Toric Surface Codes – Original Definition

- $P \subset [0, q-2]^2 \subset \mathbb{R}^2$ an integer lattice polygon
- \mathbb{F}_q a finite field with primitive element α .
- For $f \in \mathbb{Z}^2$ with $0 \le f_i \le q-2$, let $p_f = (\alpha^{f_1}, \alpha^{f_2})$ in $(\mathbb{F}_q^*)^2$.
- For any e = (e₁, e₂) ∈ P ∩ Z², let x^e be the corresponding monomial and write

$$(\boldsymbol{p}_f)^{\boldsymbol{e}} = (\alpha^{f_1})^{\boldsymbol{e}_1} \cdot (\alpha^{f_2})^{\boldsymbol{e}_2} = \alpha^{\langle f, \boldsymbol{e} \rangle}.$$

<ロ> (四) (四) (三) (三) (三)

Definitions History of Previous Work Some Examples Minkowski Sums

Toric Surface Codes – Original Definition

- $P \subset [0, q 2]^2 \subset \mathbb{R}^2$ an integer lattice polygon
- \mathbb{F}_q a finite field with primitive element α .
- For $f \in \mathbb{Z}^2$ with $0 \le f_i \le q-2$, let $p_f = (\alpha^{f_1}, \alpha^{f_2})$ in $(\mathbb{F}_q^*)^2$.
- For any e = (e₁, e₂) ∈ P ∩ Z², let x^e be the corresponding monomial and write

$$(\boldsymbol{p}_f)^{\boldsymbol{e}} = (\alpha^{f_1})^{\boldsymbol{e}_1} \cdot (\alpha^{f_2})^{\boldsymbol{e}_2} = \alpha^{\langle f, \boldsymbol{e} \rangle}.$$

• Toric surface code $C_P(\mathbb{F}_q)$ is the linear code of block length $n = (q-1)^2$ spanned by the $(p_f)^e$ for $e \in P \cap \mathbb{Z}^2$.

イロン 不良 とくほう 不良 とうほ

Definitions History of Previous Work Some Examples Minkowski Sums

In other words, ...

• Let $L = \operatorname{Span}\{x^e : e \in P \cap \mathbb{Z}^2\}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Definitions History of Previous Work Some Examples Minkowski Sums

In other words, ...

- Let $L = \operatorname{Span}\{x^e : e \in P \cap \mathbb{Z}^2\}$
- define the evaluation mapping

$$egin{array}{rcl} \mathrm{ev}: L &
ightarrow \ \mathbb{F}_q^{(q-1)^2} \ g & \mapsto & (g(p_f): p_f \in (\mathbb{F}_q^*)^2) \end{array}$$

イロン イボン イヨン イヨン

Definitions History of Previous Work Some Examples Minkowski Sums

In other words, ...

- Let $L = \operatorname{Span}\{x^e : e \in P \cap \mathbb{Z}^2\}$
- define the evaluation mapping

• Then
$$C_P(\mathbb{F}_q) = \operatorname{ev}(L)$$
.

Have

$$d = (q-1)^2 - \max_{g \in L} |\{ \text{ zeroes of } g \text{ in } (\mathbb{F}_q^*)^2 \}|$$

イロン イボン イヨン イヨン

Definitions History of Previous Work Some Examples Minkowski Sums

In other words, ...

- Let $L = \operatorname{Span}\{x^e : e \in P \cap \mathbb{Z}^2\}$
- define the evaluation mapping

$$egin{array}{rcl} \mathrm{ev}: \mathcal{L} & o & \mathbb{F}_q^{(q-1)^2} \ & g & \mapsto & (g(p_f): p_f \in (\mathbb{F}_q^*)^2) \end{array}$$

• Then
$$C_P(\mathbb{F}_q) = \operatorname{ev}(L)$$
.

Have

$$d = (q-1)^2 - \max_{g \in L} |\{ \text{ zeroes of } g \text{ in } (\mathbb{F}_q^*)^2 \}|$$

 Lots of interesting properties – higher dimensional analogs of Reed-Solomon codes

Definitions History of Previous Work Some Examples Minkowski Sums

Previous work

• Toric surface codes introduced by J. Hansen about 1998

イロト 不得 とくほと くほとう

Definitions History of Previous Work Some Examples Minkowski Sums

Previous work

- Toric surface codes introduced by J. Hansen about 1998
- Some very good examples discovered by D. Joyner (USNA) about 2000

ヘロト 人間 ト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

Previous work

- Toric surface codes introduced by J. Hansen about 1998
- Some very good examples discovered by D. Joyner (USNA) about 2000
- Undergraduates SIMU 2001; at HC: Alex Simao, Ryan Schwarz; MSRI-UP 2009

ヘロト ヘアト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

Previous work

- Toric surface codes introduced by J. Hansen about 1998
- Some very good examples discovered by D. Joyner (USNA) about 2000
- Undergraduates SIMU 2001; at HC: Alex Simao, Ryan Schwarz; MSRI-UP 2009
- J. Little, H. Schenck, *Toric surface codes and Minkowski sums*, SIAM J. Discrete Math. **20** (2006), 999–1014.

Definitions History of Previous Work Some Examples Minkowski Sums

Previous work

- Toric surface codes introduced by J. Hansen about 1998
- Some very good examples discovered by D. Joyner (USNA) about 2000
- Undergraduates SIMU 2001; at HC: Alex Simao, Ryan Schwarz; MSRI-UP 2009
- J. Little, H. Schenck, *Toric surface codes and Minkowski sums*, SIAM J. Discrete Math. **20** (2006), 999–1014.
- I. Soprunov, E. Soprunova, *Toric surface codes and Minkowski length of polygons*, SIAM J. Discrete Math. 23 (2009), 384–400.

イロト イポト イヨト イヨト 三日

Definitions History of Previous Work Some Examples Minkowski Sums

Generalizing Toric Codes

Can do same construction for polytopes
 P ⊂ [0, q − 2]^m ⊂ ℝ^m for any m ≥ 1 ("m-dimensional toric codes")

Definitions History of Previous Work Some Examples Minkowski Sums

Generalizing Toric Codes

- Can do same construction for polytopes
 P ⊂ [0, q − 2]^m ⊂ ℝ^m for any m ≥ 1 ("m-dimensional toric codes")
- Can replace the set $P \cap \mathbb{Z}^m$ by an arbitrary set $S \subset \mathbb{Z}^m \cap [0, q-2]^m$.

Definitions History of Previous Work Some Examples Minkowski Sums

Generalizing Toric Codes

- Can do same construction for polytopes
 P ⊂ [0, q − 2]^m ⊂ ℝ^m for any m ≥ 1 ("m-dimensional toric codes")
- Can replace the set $P \cap \mathbb{Z}^m$ by an arbitrary set $S \subset \mathbb{Z}^m \cap [0, q-2]^m$.
- These "generalized toric codes" have many of the same properties

Definitions History of Previous Work Some Examples Minkowski Sums

Best Known Codes From This Construction

 an *m* = 2 generalized toric code over 𝔽₈ with parameters [49, 8, 34] − found by one group at MSRI-UP 2009

ヘロト ヘ回ト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

Best Known Codes From This Construction

- an *m* = 2 generalized toric code over 𝔽₈ with parameters [49, 8, 34] − found by one group at MSRI-UP 2009
- different m = 3 generalized toric codes over \mathbb{F}_5 with parameters [64, 8, 42] another group at MSRI-UP 2009 and Alex Simao

ヘロト ヘ回ト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

Another One Found This Summer!

Over \mathbb{F}_8 , take *S* given by filled in circles (P = conv(S) shown as well):

Get a [49, 12, 28] code – best previously known for n = 49, k = 12 over \mathbb{F}_8 was d = 27.

くロト (過) (目) (日)

Definitions History of Previous Work Some Examples Minkowski Sums

How Were These Found?

Nicest way to say it – "heuristic search" :)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions History of Previous Work Some Examples Minkowski Sums

How Were These Found?

- Nicest way to say it "heuristic search" :)
- Not very satisfying, though!

ヘロト 人間 とくほとくほとう

Definitions History of Previous Work Some Examples Minkowski Sums

How Were These Found?

- Nicest way to say it "heuristic search" :)
- Not very satisfying, though!
- There are general theoretical lower and upper bounds on d that apply to these codes (esp. work of D. Ruano, P. Beelen) but

ヘロト ヘ回ト ヘヨト ヘヨト

Definitions History of Previous Work Some Examples Minkowski Sums

How Were These Found?

- Nicest way to say it "heuristic search" :)
- Not very satisfying, though!
- There are general theoretical lower and upper bounds on d that apply to these codes (esp. work of D. Ruano, P. Beelen) but
- Not very easy to apply, and rarely sharp

イロン イボン イヨン イヨン

Definitions History of Previous Work Some Examples Minkowski Sums

Little-Schenk, Soprunov-Soprunova Approach

• Starting with LS, tightened and extended by SS, known that *d* for $C_P(\mathbb{F}_q)$ is highly correlated with L(P) = full*Minkowski length* of P – the maximum number of summands in a Minkowski sum decomposition $Q = Q_1 + \cdots + Q_L$ for $Q \subseteq P$.

ヘロト 人間 とくほとくほとう

Definitions History of Previous Work Some Examples Minkowski Sums

Little-Schenk, Soprunov-Soprunova Approach

- Starting with LS, tightened and extended by SS, known that *d* for $C_P(\mathbb{F}_q)$ is highly correlated with L(P) = full*Minkowski length* of P – the maximum number of summands in a Minkowski sum decomposition $Q = Q_1 + \cdots + Q_L$ for $Q \subseteq P$.
- SS showed that in the plane every Minkowski-indecomposable polygon is lattice equivalent to either
 - (a) the unit lattice segment $conv\{(0,0), (1,0)\}$,
 - (b) the unit lattice simplex $conv\{(0,0), (1,0), (0,1)\}$, or
 - (c) the "exceptional triangle" $T_0 = conv\{(0,0), (1,2), (2,1)\}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Definitions History of Previous Work Some Examples Minkowski Sums

The Soprunov-Soprunova Theorem

Theorem 1 (SS)

If q is larger than an explicit lower bound depending on L(P) and the area of P, then

$$d(C_P(\mathbb{F}_q)) \geq (q-1)^2 - L(P)(q-1) - \lfloor 2\sqrt{q}
floor + 1,$$
 (1)

and if no maximally decomposable $Q \subset P$ contains an exceptional triangle, then

$$d(C_P(\mathbb{F}_q)) \ge (q-1)^2 - L(P)(q-1).$$
 (2)

Definitions History of Previous Work Some Examples Minkowski Sums

An Example

Say $P = conv\{(0,0), (2,0), (3,1), (1,4)\}$:

Have L(P) = 4, and *P* contains just one Minkowski sum of 4 indecomposable polygons, namely the line segment $Q = conv\{(1,0), (1,4)\}$. Expect for *q* sufficiently large,

$$d(C_P(\mathbb{F}_q)) = (q-1)^2 - 4(q-1).$$

イロト 不得 とくほと くほとう

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロト イポト イヨト イヨト

3

Example, Continued

Now, study $C_S(\mathbb{F}_q)$ for *S* contained in *P* from before:

What happens? k = 7 only (not k = 10), and ...

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example, Continued

		02 1 0 10	
$\mathcal{O}(\mathcal{C}_{S}(\mathbb{F}_{7})) = 18$	vs.	$6^2 - 4 \cdot 6 = 12$	
$d(C_S(\mathbb{F}_8))=33$	vs.	$7^2 - 4 \cdot 7 = 21$	
$d(\mathcal{C}_{\mathcal{S}}(\mathbb{F}_9))=32$	vs.	$8^2 - 4 \cdot 8 = 32$	
$d(C_S(\mathbb{F}_{11}))=70$	vs.	$10^2 - 4 \cdot 10 = 60$	
$d(C_S(\mathbb{F}_{13})) = 96$	=	$12^2 - 4 \cdot 12 = 96$	
$d(C_{\mathcal{S}}(\mathbb{F}_{16})) = 165$	=	$15^2 - 4 \cdot 15 = 165$	
$d(C_S(\mathbb{F}_{17})) = 192$	=	$16^2 - 4 \cdot 16 = 192$	
$d(C_S(\mathbb{F}_{19}))=270$	vs.	$18^2 - 4 \cdot 18 = 252$	
$d(C_S(\mathbb{F}_q))$	=	$(q-1)^2 - 4(q-1)$	all $q \ge 23(?)$

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

The Minimum Weight Words

• $\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q) \subset \mathcal{C}_{\mathcal{P}}(\mathbb{F}_q)$, so $d(\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q)) \geq d(\mathcal{C}_{\mathcal{P}}(\mathbb{F}_q))$ and
Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロン 不得 とくほ とくほ とう

The Minimum Weight Words

- $\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q) \subset \mathcal{C}_{\mathcal{P}}(\mathbb{F}_q),$ so $d(\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q)) \geq d(\mathcal{C}_{\mathcal{P}}(\mathbb{F}_q))$ and
- $d(C_P(\mathbb{F}_q)) = (q-1)^2 4(q-1)$ for all q > 19. (Reason: SS Theorem implies \geq , but the C_P code contains the words

$$ev(x(y^4 + a_3y^3 + a_2y^2 + a_1y + a_0))$$

for all $a_i \in \mathbb{F}_q$.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロト イポト イヨト イヨト 三日

The Minimum Weight Words

- $\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q) \subset \mathcal{C}_{\mathcal{P}}(\mathbb{F}_q),$ so $d(\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q)) \geq d(\mathcal{C}_{\mathcal{P}}(\mathbb{F}_q))$ and
- $d(C_P(\mathbb{F}_q)) = (q-1)^2 4(q-1)$ for all q > 19. (Reason: SS Theorem implies \geq , but the C_P code contains the words

$$ev(x(y^4 + a_3y^3 + a_2y^2 + a_1y + a_0))$$

for all $a_i \in \mathbb{F}_q$.

• Some of those quartic polynomials factor completely as $(y - \beta_1) \cdots (y - \beta_4)$ for $\beta_j \in \mathbb{F}_q^*$, so 4(q - 1) zeroes in $(\mathbb{F}_q^*)^2$.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

ヘロン 人間 とくほ とくほ とう

The Minimum Weight Words

- $\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q) \subset \mathcal{C}_{\mathcal{P}}(\mathbb{F}_q),$ so $d(\mathcal{C}_{\mathcal{S}}(\mathbb{F}_q)) \geq d(\mathcal{C}_{\mathcal{P}}(\mathbb{F}_q))$ and
- $d(C_P(\mathbb{F}_q)) = (q-1)^2 4(q-1)$ for all q > 19. (Reason: SS Theorem implies \geq , but the C_P code contains the words

$$ev(x(y^4 + a_3y^3 + a_2y^2 + a_1y + a_0))$$

for all $a_i \in \mathbb{F}_q$.

- Some of those quartic polynomials factor completely as $(y \beta_1) \cdots (y \beta_4)$ for $\beta_j \in \mathbb{F}_q^*$, so 4(q 1) zeroes in $(\mathbb{F}_q^*)^2$.
- Key point is: In F_q for q sufficiently large, there are also polynomials of the form y⁴ + a₁y + a₀ that factor completely with distinct nonzero roots.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Families of Polynomials

Consider any linear family ${\mathcal F}$ of polynomials of the form

$$f(u) = u^{\ell} + t_1 u^{k_1} + \dots + t_{m-1} u^{k_{m-1}} + t_m$$
(3)

in $\mathbb{F}_q[u]$, where

- 2 the exponents $\ell > k_1 > \cdots > k_{m-1} > k_m = 0$ are fixed,
- **(3)** the coefficients t_i , $1 \le i \le m$ run over the finite field \mathbb{F}_q , and
- the $\ell, k_1, \ldots, k_{m-1}$ are *not* all multiples of some fixed integer j > 1.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロン 不得 とくほ とくほ とう

Factorization Patterns

Say that a polynomial *f*(*u*) of degree ℓ has factorization pattern

$$\lambda = \mathbf{1}^{a_1} \mathbf{2}^{a_2} \cdots \ell^{a_\ell},$$

where $\sum_{i=1}^{\ell} a_i \cdot i = \ell$, if in $\mathbb{F}_q[u]$, f(u) factors as a product of a_i irreducible factors of degree *i* (not necessarily distinct) for each $i = 1, ..., \ell$.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

<ロン <回と < 注入 < 注入 < 注入 = 注

Factorization Patterns

Say that a polynomial *f*(*u*) of degree ℓ has factorization pattern

$$\lambda = \mathbf{1}^{a_1} \mathbf{2}^{a_2} \cdots \ell^{a_\ell},$$

where $\sum_{i=1}^{\ell} a_i \cdot i = \ell$, if in $\mathbb{F}_q[u]$, f(u) factors as a product of a_i irreducible factors of degree *i* (not necessarily distinct) for each $i = 1, ..., \ell$.

Let

$$T(\lambda) = \frac{1}{a_1! \cdots a_\ell! 1^{a_1} \cdots \ell^{a_\ell}}$$

be the proportion of elements of the symmetric group S_{ℓ} with cycle decomposition of shape λ .

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

ヘロト ヘアト ヘヨト ヘ

Cohen's Theorem

Then S. Cohen proved the following statement in 1972:

Theorem 2

Let \mathcal{F} satisfy the conditions above, and let \mathcal{F}_{λ} be the subset of \mathcal{F} consisting of polynomials with factorization pattern λ in $\mathbb{F}_q[u]$. Then for all q sufficiently large,

$$|\mathcal{F}_{\lambda}| = \mathcal{T}(\lambda) oldsymbol{q}^m + O\left(oldsymbol{q}^{m-rac{1}{2}}
ight)$$

where the implied constant depends only on ℓ .

Usually applied to produce *irreducibles* of given shapes; we want to apply it to get *"completely reducibles"*.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Distinct Roots

We want to study factorizations of shape λ = λ₀ := 1^ℓ where, in addition,

$$f(u) = \prod_{i=1}^{\ell} (u - \beta_i)$$

with β_i distinct in \mathbb{F}_q^* .

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロン 不良 とくほう 不良 とうほ

Distinct Roots

We want to study factorizations of shape λ = λ₀ := 1^ℓ where, in addition,

$$f(u) = \prod_{i=1}^{\ell} (u - \beta_i)$$

with β_i distinct in \mathbb{F}_a^* .

Elements of *F* with repeated roots (possibly in some extension of F_q) correspond to F_q-rational points

$$(t_1,\ldots,t_m)\subset \mathcal{D}_{\mathcal{F}},$$

where $\mathcal{D}_{\mathcal{F}} = V(\Delta_{\mathcal{F}})$ and

$$\Delta_{\mathcal{F}} = \operatorname{resultant}(f(u), f'(u), u)$$

is the discriminant of the family.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

ヘロト ヘアト ヘヨト ヘヨト

The Discriminant Variety

• Note that $D_{\mathcal{F}}$ is an (m-1)-dimensional affine hypersurface, singular and possible reducible.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

ヘロト ヘアト ヘヨト ヘ

The Discriminant Variety

- Note that $\mathcal{D}_{\mathcal{F}}$ is an (m-1)-dimensional affine hypersurface, singular and possible reducible.
- However, when the characteristic p is large enough, it is known that when the conditions above hold on \mathcal{F} , $\mathcal{D}_{\mathcal{F}}$ can have at most one irreducible component other than the hyperplane $V(t_m)$.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

ヘロト 人間 とくほとくほとう

The Discriminant Variety

- Note that $\mathcal{D}_{\mathcal{F}}$ is an (m-1)-dimensional affine hypersurface, singular and possible reducible.
- However, when the characteristic p is large enough, it is known that when the conditions above hold on \mathcal{F} , $\mathcal{D}_{\mathcal{F}}$ can have at most one irreducible component other than the hyperplane $V(t_m)$.
- By a general bound of Ghorpade-Lachaud, it follows that

$$|D_{\mathcal{F}}(\mathbb{F}_q)| \leq \delta \pi_{m-1},$$

where $\pi_{m-1} = |\mathbb{P}^{m-1}(\mathbb{F}_q)| = q^{m-1} + q^{m-2} + \cdots + q + 1$, and $\delta = \deg \Delta_{\mathcal{F}} \leq 2\ell - 2$.

Motivating Example Explanation Factorizations For Polynomials in one variable One Application

イロト イポト イヨト イヨト

3

Existence of Completely Reducibles

Corollary 3

If $p > \ell$ and $q = p^h$ is sufficiently large, there exist elements of the family $\mathcal{F} \subset \mathbb{F}_q[u]$ with factorization pattern $\lambda_0 = 1^{\ell}$ in which the irreducible factors are distinct, and for which all the roots are nonzero.

Proof.

The first part of this comes from comparing the orders of growth of the various terms in Cohen and Ghorpade-Lachaud. The last part of this is clear since if any of the roots is zero, then the coefficient $t_m = 0$, and the locus where that is true has dimension m - 1.

Motivating Example Explanation Factorizations For Polynomials in one variable **One Application**

First Main Theorem

Theorem 4

Let P have full Minkowski length $L(P) = \ell$ from a unique $Q \subset P$ lattice equivalent to ℓI for a primitive lattice segment. Let $S \subset Q \cap \mathbb{Z}^2$ correspond to a family \mathcal{F} such that

S contains the endpoints of Q, and

2 The k_i and ℓ are not all multiples of any fixed integer j > 1. Then for all primes p sufficiently large and all $h \ge 1$, letting $q = p^h$, we have

$$d(C_{\mathcal{S}}(\mathbb{F}_q))=d(C_{\mathcal{P}}(\mathbb{F}_q))=(q-1)^2-\ell(q-1).$$

Moreover, for all q, there exists $h \ge 1$ such that the same statement is true if we replace q by q^h .

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

ヘロト ヘアト ヘヨト

The Exceptional Triangle

The first main theorem only applies in case there is a unique maximally decomposable Q not containing T_0 :

Let *S* consist of the three boundary lattice points. Question: How do $d(C_{T_0}(\mathbb{F}_q))$ and $d(C_S(\mathbb{F}_q))$ compare?

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

Some Experimental Results

$$\begin{aligned} d(C_S(\mathbb{F}_7)) &= 27 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_7)) = 27 \\ d(C_S(\mathbb{F}_8)) &= 42 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_8)) = 40 \\ d(C_S(\mathbb{F}_9)) &= 56 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_9)) = 52 \\ d(C_S(\mathbb{F}_{11})) &= 90 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{11})) = 85 \\ d(C_S(\mathbb{F}_{13})) &= 126 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{13})) = 126 \\ d(C_S(\mathbb{F}_{16})) &= 207 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{16})) = 204 \\ d(C_S(\mathbb{F}_{17})) &= 240 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{17})) = 235 \\ d(C_S(\mathbb{F}_{19})) &= 300 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{19})) = 300 \\ d(C_S(\mathbb{F}_{23})) &= 462 \quad \text{vs.} \quad d(C_{T_0}(\mathbb{F}_{23})) = 454. \end{aligned}$$

Are there arbitrarily large q with $d(C_S) > d(C_{T_0})$ and also with $d(C_S) = d(C_{T_0})$?

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

The Corresponding Curves

• The span of the monomials corresponding to all lattice points in *T*₀ is the family of polynomials

$$Ax^2y + Bxy^2 + Cxy + D$$

くロト (過) (目) (日)

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

The Corresponding Curves

• The span of the monomials corresponding to all lattice points in *T*₀ is the family of polynomials

$$Ax^2y + Bxy^2 + Cxy + D$$

• The ones from S all have C = 0.

くロト (過) (目) (日)

2

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

・ロト ・回ト ・ヨト ・ヨト

The Corresponding Curves

• The span of the monomials corresponding to all lattice points in *T*₀ is the family of polynomials

$$Ax^2y + Bxy^2 + Cxy + D$$

- The ones from S all have C = 0.
- Note total degree is ≤ 3 if ABD ≠ 0, the variety is irreducible, hence a curve of (arithmetic) genus 1. The family contains nodal cubics; smooth ones are *elliptic curves*.

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

・ロト ・回ト ・ヨト ・ヨト

The Corresponding Curves

• The span of the monomials corresponding to all lattice points in *T*₀ is the family of polynomials

$$Ax^2y + Bxy^2 + Cxy + D$$

- The ones from S all have C = 0.
- Note total degree is ≤ 3 if ABD ≠ 0, the variety is irreducible, hence a curve of (arithmetic) genus 1. The family contains nodal cubics; smooth ones are *elliptic curves*.
- To understand *d* for corresponding codes, need to know how many F_q-rational points they can have

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

ヘロト ヘアト ヘビト ヘビト

More Properties

• The cubic curves from T_0 with $AB \neq 0$ have three flexes on the line at infinity. How can we see this?

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

More Properties

- The cubic curves from T₀ with AB ≠ 0 have three flexes on the line at infinity. How can we see this?
- Homogenized, equation is: $AX^2Y + BXY^2 + CXYZ + DZ^3 = 0.$

ヘロト ヘアト ヘビト ヘビト

2

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

More Properties

- The cubic curves from T_0 with $AB \neq 0$ have three flexes on the line at infinity. How can we see this?
- Homogenized, equation is: $AX^2Y + BXY^2 + CXYZ + DZ^3 = 0.$
- For instance, at [X : Y : Z] = [1 : 0 : 0], the tangent line is Y = 0, and this meets curve with multiplicity 3 a "flex tangent."

イロト イポト イヨト イヨト

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

ヘロト ヘ回ト ヘヨト ヘヨト

More Properties

- The cubic curves from T₀ with AB ≠ 0 have three flexes on the line at infinity. How can we see this?
- Homogenized, equation is: $AX^2Y + BXY^2 + CXYZ + DZ^3 = 0.$
- For instance, at [X : Y : Z] = [1 : 0 : 0], the tangent line is Y = 0, and this meets curve with multiplicity 3 a "flex tangent."
- Flexes ⇔ points of order 3 in the group law, and the three points at infinity form a subgroup of order 3

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

A "Universal Family"

• In fact, this is the so-called "Hessian family," a well-known sort of universal family for elliptic curves over \mathbb{F}_q with nontrivial 3-torsion subgroups

イロト イポト イヨト イヨト

2

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

A "Universal Family"

- In fact, this is the so-called "Hessian family," a well-known sort of universal family for elliptic curves over \mathbb{F}_q with nontrivial 3-torsion subgroups
- For simplicity, we'll stick to cases $p \ge 5$.

イロト イポト イヨト イヨト

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

A "Universal Family"

- In fact, this is the so-called "Hessian family," a well-known sort of universal family for elliptic curves over \mathbb{F}_q with nontrivial 3-torsion subgroups
- For simplicity, we'll stick to cases $p \ge 5$.
- Can easily convert to Weierstrass form, to look at *j*-invariant

ヘロト ヘアト ヘヨト ヘヨト

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

A "Universal Family"

- In fact, this is the so-called "Hessian family," a well-known sort of universal family for elliptic curves over \mathbb{F}_q with nontrivial 3-torsion subgroups
- For simplicity, we'll stick to cases $p \ge 5$.
- Can easily convert to Weierstrass form, to look at *j*-invariant
- For a Weierstrass cubic $u^2 = v^3 + \alpha v + \beta$,

$$j = 1728 \frac{4\alpha^3}{4\alpha^3 + 27\beta^2}.$$

<ロト <回 > < 注 > < 注 > 、

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

<ロ> <同> <同> < 同> < 同> 、

A "Universal Family"

- In fact, this is the so-called "Hessian family," a well-known sort of universal family for elliptic curves over \mathbb{F}_q with nontrivial 3-torsion subgroups
- For simplicity, we'll stick to cases $p \ge 5$.
- Can easily convert to Weierstrass form, to look at *j*-invariant
- For a Weierstrass cubic $u^2 = v^3 + \alpha v + \beta$,

$$j = 1728 \frac{4\alpha^3}{4\alpha^3 + 27\beta^2}.$$

Curves from S with ABD ≠ 0 always correspond to smooth elliptic curves with j = 0

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

ヘロト ヘアト ヘビト ヘビト

Supersingular Curves

• When $p \equiv 2 \mod 3$ for an odd prime *p*, elliptic curves with j = 0 are *supersingular*

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

Supersingular Curves

- When $p \equiv 2 \mod 3$ for an odd prime *p*, elliptic curves with j = 0 are *supersingular*

イロト イポト イヨト イヨト

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

Supersingular Curves

- When $p \equiv 2 \mod 3$ for an odd prime *p*, elliptic curves with j = 0 are *supersingular*
- There are many equivalent characterizations of this property

イロト イポト イヨト イヨト

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

・ロン ・ 一 マン・ 日 マー・

Supersingular Curves

- When $p \equiv 2 \mod 3$ for an odd prime *p*, elliptic curves with j = 0 are *supersingular*
- There are many equivalent characterizations of this property
- For us, the one that is most relevant (because it directly says someting about numbers of 𝔽_{p^h}-rational points) is that the *trace of Frobenius* is zero.

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

イロト イポト イヨト イヨト

Supersingular Curves

This implies that for *E* a supersingular curve,

$$|E(\mathbb{F}_{p^h})| = \begin{cases} p^h + 1 & h \text{ odd} \\ p^h + 1 + 2p^{h/2} & \text{if } h \equiv 2 \mod 4 \\ p^h + 1 - 2p^{h/2} & \text{if } h \equiv 0 \mod 4. \end{cases}$$

In other words, supersingular elliptic curves defined over \mathbb{F}_p achieve the Hasse-Weil *upper* bound over \mathbb{F}_{p^h} when $h \equiv 2 \mod 4$. On the other hand, they achieve the Hasse-Weil *lower* bound over \mathbb{F}_{p^h} when $h \equiv 0 \mod 4$.

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

Second Main Theorem

Theorem 5

Let p be odd and $p \equiv 2 \mod 3$. Then

$$d(C_{\mathcal{S}}(\mathbb{F}_p))=(p-1)^2-(p-1)>d(C_{\mathcal{T}_0}(\mathbb{F}_p)).$$

Proof. The elliptic curves from *S* are supersingular, so all of the codewords of $C_S(\mathbb{F}_p)$ obtained from evaluation of $Axy^2 + Bxy^2 + D$ with $ABD \neq 0$ will have weight

$$(p-1)^2 - (p+1-3) > (p-1)^2 - (p-1).$$

On the other hand, there are also codewords of weight $(p-1)^2 - (p-1)$ from polynomials with one coefficient equal to zero. Those give the minimum weight words in this case.

Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

Proof, Concluded

By a theorem of Waterhouse, there are elliptic curves over \mathbb{F}_{ρ} with

$$|E(\mathbb{F}_p)| = p + 1 + t$$

for all integers *t* with $t \leq \lfloor 2\sqrt{p} \rfloor$ and gcd(t, p) = 1 (as well as some other possibilities). By the universality of our family for curves with nontrivial 3-torsion, there will be curves here with p + 1 + t points rational over \mathbb{F}_p if *t* is the *largest* integer satisfying $t \leq \lfloor 2\sqrt{p} \rfloor$, *t* prime to *p*, and such that 3|(p + 1 + t). These give codewords of considerably smaller weight, close to

$$(p-1)^2 - (p+1+2\sqrt{p}-3).$$

So *d* for the code from *S* will be strictly larger than *d* for the code from T_0 for all such *p*. \Box
Background Generalized Toric Surface Codes The Exceptional Triangle Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

"Reality Check"

Go back and look at the experimental data from before!
For instance p = 23 vs. p = 19.

ヘロト 人間 ト ヘヨト ヘヨト

Background Generalized Toric Surface Codes The Exceptional Triangle Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

イロト イポト イヨト イヨト

"Reality Check"

- Go back and look at the experimental data from before! For instance p = 23 vs. p = 19.
- There are similar patterns for the C_P and C_S codes from all polygons where the Minkowski-decomposable Q ⊂ P of maximal length contains a term lattice equivalent to T₀.

Background Generalized Toric Surface Codes The Exceptional Triangle Setting Up Curves With Non-Trivial 3-Torsion Role of Supersingular Curves

ヘロト ヘアト ヘヨト

Conclusion

There are contributions both from

- geometry of P, S, Minkowski decompositions, etc., and
- 2 arithmetic of rational points of curves over \mathbb{F}_q

to the minimum distance of generalized toric surface codes. Very subtle and interesting phenomena!