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Coding Theory Basics

Goal: Want a provably effective way of constructing “good”
linear codes over finite fields Fq: vector subspaces C of Fn

q
for given n

“Good” code means: minimum distance d of the code is
large (for given n and k = dimFq C)
Minimum distance:

d = min
x 6=y∈C

wt(x − y) = min
x 6=0∈C

wt(x),

where wt(x) is the Hamming weight (number of nonzero
entries) – related to error-correction capacity when
information is encoded to elements of C and transmitted
over a noisy channel.
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Toric Surface Codes – Original Definition

P ⊂ [0, q − 2]2 ⊂ R2 an integer lattice polygon

Fq a finite field with primitive element α.
For f ∈ Z2 with 0 ≤ fi ≤ q − 2, let pf = (αf1 , αf2) in (F ∗

q )2.

For any e = (e1, e2) ∈ P ∩ Z2, let xe be the corresponding
monomial and write

(pf )
e = (αf1)e1 · (αf2)e2 = α〈f ,e〉.

Toric surface code CP(Fq) is the linear code of block length
n = (q − 1)2 spanned by the (pf )

e for e ∈ P ∩ Z2.
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In other words, ...

Let L = Span{xe : e ∈ P ∩ Z2}

define the evaluation mapping

ev : L → F (q−1)2

q

g 7→ (g(pf ) : pf ∈ (F ∗
q )2)

Then CP(Fq) = ev(L).
Have

d = (q − 1)2 −max
g∈L

|{ zeroes of g in (F ∗
q )2}|

Lots of interesting properties – higher dimensional analogs
of Reed-Solomon codes
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Previous work

Toric surface codes introduced by J. Hansen about 1998

Some very good examples discovered by D. Joyner
(USNA) about 2000
Undergraduates – SIMU 2001; at HC: Alex Simao, Ryan
Schwarz; MSRI-UP 2009
J. Little, H. Schenck, Toric surface codes and Minkowski
sums, SIAM J. Discrete Math. 20 (2006), 999–1014.
I. Soprunov, E. Soprunova, Toric surface codes and
Minkowski length of polygons, SIAM J. Discrete Math. 23
(2009), 384–400.
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Generalizing Toric Codes

Can do same construction for polytopes
P ⊂ [0, q − 2]m ⊂ Rm for any m ≥ 1 (“m-dimensional toric
codes”)

Can replace the set P ∩ Zm by an arbitrary set
S ⊂ Zm ∩ [0, q − 2]m.
These “generalized toric codes” have many of the same
properties
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Best Known Codes From This Construction

an m = 2 generalized toric code over F8 with parameters
[49, 8, 34] – found by one group at MSRI-UP 2009

different m = 3 generalized toric codes over F5 with
parameters [64, 8, 42] – another group at MSRI-UP 2009
and Alex Simao
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Another One Found This Summer!

Over F8, take S given by filled in circles (P = conv(S) shown as
well):

sc c ss s s c cs s c c s ss c s c cs
Q

Q
Q�

�
�
A

A
����

Get a [49, 12, 28] code – best previously known for n = 49,
k = 12 over F8 was d = 27.
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How Were These Found?

Nicest way to say it – "heuristic search" :)

Not very satisfying, though!
There are general theoretical lower and upper bounds on d
that apply to these codes (esp. work of D. Ruano, P.
Beelen) but
Not very easy to apply, and rarely sharp
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Little-Schenk, Soprunov-Soprunova Approach

Starting with LS, tightened and extended by SS, known
that d for CP(Fq) is highly correlated with L(P) = full
Minkowski length of P – the maximum number of
summands in a Minkowski sum decomposition
Q = Q1 + · · ·+ QL for Q ⊆ P.

SS showed that in the plane every
Minkowski-indecomposable polygon is lattice equivalent to
either
(a) the unit lattice segment conv{(0, 0), (1, 0)},
(b) the unit lattice simplex conv{(0, 0), (1, 0), (0, 1)}, or
(c) the “exceptional triangle” T0 = conv{(0, 0), (1, 2), (2, 1)}
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The Soprunov-Soprunova Theorem

Theorem 1 (SS)

If q is larger than an explicit lower bound depending on L(P)
and the area of P, then

d(CP(Fq)) ≥ (q − 1)2 − L(P)(q − 1)− b2
√

qc+ 1, (1)

and if no maximally decomposable Q ⊂ P contains an
exceptional triangle, then

d(CP(Fq)) ≥ (q − 1)2 − L(P)(q − 1). (2)
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An Example

Say P = conv{(0, 0), (2, 0), (3, 1), (1, 4)}:

s s ss s ss sss
�
J

J
JJ�

�
�
�

Have L(P) = 4, and P contains just one Minkowski sum of 4
indecomposable polygons, namely the line segment
Q = conv{(1, 0), (1, 4)}. Expect for q sufficiently large,

d(CP(Fq)) = (q − 1)2 − 4(q − 1).
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Example, Continued

Now, study CS(Fq) for S contained in P from before:

s s ss c sc scs
�
J

J
JJ�

�
�
�

What happens? k = 7 only (not k = 10), and ...
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Example, Continued

d(CS(F7)) = 18 vs. 62 − 4 · 6 = 12
d(CS(F8)) = 33 vs. 72 − 4 · 7 = 21
d(CS(F9)) = 32 vs. 82 − 4 · 8 = 32

d(CS(F11)) = 70 vs. 102 − 4 · 10 = 60
d(CS(F13)) = 96 = 122 − 4 · 12 = 96

d(CS(F16)) = 165 = 152 − 4 · 15 = 165
d(CS(F17)) = 192 = 162 − 4 · 16 = 192
d(CS(F19)) = 270 vs. 182 − 4 · 18 = 252

d(CS(Fq)) = (q − 1)2 − 4(q − 1) all q ≥ 23(?)
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The Minimum Weight Words

CS(Fq) ⊂ CP(Fq), so d(CS(Fq)) ≥ d(CP(Fq)) and

d(CP(Fq)) = (q − 1)2 − 4(q − 1) for all q > 19. (Reason:
SS Theorem implies ≥, but the CP code contains the words

ev(x(y4 + a3y3 + a2y2 + a1y + a0))

for all ai ∈ Fq.
Some of those quartic polynomials factor completely as
(y −β1) · · · (y −β4) for βj ∈ F ∗

q , so 4(q−1) zeroes in (F ∗
q )2.

Key point is: In Fq for q sufficiently large, there are also
polynomials of the form y4 + a1y + a0 that factor
completely with distinct nonzero roots.
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Families of Polynomials

Consider any linear family F of polynomials of the form

f (u) = u` + t1uk1 + · · ·+ tm−1ukm−1 + tm (3)

in Fq[u], where
1 p > `,
2 the exponents ` > k1 > · · · > km−1 > km = 0 are fixed,
3 the coefficients ti , 1 ≤ i ≤ m run over the finite field Fq, and
4 the `, k1, . . . , km−1 are not all multiples of some fixed

integer j > 1.
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Factorization Patterns

Say that a polynomial f (u) of degree ` has factorization
pattern

λ = 1a12a2 · · · `a` ,

where
∑`

i=1 ai · i = `, if in Fq[u], f (u) factors as a product
of ai irreducible factors of degree i (not necessarily distinct)
for each i = 1, . . . , `.

Let
T (λ) =

1
a1! · · ·a`!1a1 · · · `a`

be the proportion of elements of the symmetric group S`

with cycle decomposition of shape λ.
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Cohen’s Theorem

Then S. Cohen proved the following statement in 1972:

Theorem 2
Let F satisfy the conditions above, and let Fλ be the subset of
F consisting of polynomials with factorization pattern λ in Fq[u].
Then for all q sufficiently large,

|Fλ| = T (λ)qm + O
(

qm− 1
2

)
where the implied constant depends only on `.

Usually applied to produce irreducibles of given shapes; we
want to apply it to get “completely reducibles”.
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Distinct Roots

We want to study factorizations of shape λ = λ0 := 1`

where, in addition,

f (u) =
∏̀
i=1

(u − βi)

with βi distinct in F ∗
q .

Elements of F with repeated roots (possibly in some
extension of Fq) correspond to Fq-rational points

(t1, . . . , tm) ⊂ DF ,

where DF = V (∆F ) and

∆F = resultant(f (u), f ′(u), u)

is the discriminant of the family.
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The Discriminant Variety

Note that DF is an (m − 1)-dimensional affine
hypersurface, singular and possible reducible.

However, when the characteristic p is large enough, it is
known that when the conditions above hold on F , DF can
have at most one irreducible component other than the
hyperplane V (tm).
By a general bound of Ghorpade-Lachaud, it follows that

|DF (Fq)| ≤ δπm−1,

where πm−1 = |Pm−1(Fq)| = qm−1 + qm−2 + · · ·+ q + 1,
and δ = deg ∆F ≤ 2`− 2.
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Existence of Completely Reducibles

Corollary 3

If p > ` and q = ph is sufficiently large, there exist elements of
the family F ⊂ Fq[u] with factorization pattern λ0 = 1` in which
the irreducible factors are distinct, and for which all the roots
are nonzero.

Proof.
The first part of this comes from comparing the orders of
growth of the various terms in Cohen and Ghorpade-Lachaud.
The last part of this is clear since if any of the roots is zero, then
the coefficient tm = 0, and the locus where that is true has
dimension m − 1.
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First Main Theorem

Theorem 4
Let P have full Minkowski length L(P) = ` from a unique Q ⊂ P
lattice equivalent to `I for a primitive lattice segment. Let
S ⊂ Q ∩ Z2 correspond to a family F such that

1 S contains the endpoints of Q, and
2 The ki and ` are not all multiples of any fixed integer j > 1.

Then for all primes p sufficiently large and all h ≥ 1, letting
q = ph, we have

d(CS(Fq)) = d(CP(Fq)) = (q − 1)2 − `(q − 1).

Moreover, for all q, there exists h ≥ 1 such that the same
statement is true if we replace q by qh.
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The Exceptional Triangle

The first main theorem only applies in case there is a unique
maximally decomposable Q not containing T0:

s s sc
�
�

��
@

Let S consist of the three boundary lattice points. Question:
How do d(CT0(Fq)) and d(CS(Fq)) compare?
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Some Experimental Results

d(CS(F7)) = 27 vs. d(CT0(F7)) = 27
d(CS(F8)) = 42 vs. d(CT0(F8)) = 40
d(CS(F9)) = 56 vs. d(CT0(F9)) = 52

d(CS(F11)) = 90 vs. d(CT0(F11)) = 85
d(CS(F13)) = 126 vs. d(CT0(F13)) = 126
d(CS(F16)) = 207 vs. d(CT0(F16)) = 204
d(CS(F17)) = 240 vs. d(CT0(F17)) = 235
d(CS(F19)) = 300 vs. d(CT0(F19)) = 300
d(CS(F23)) = 462 vs. d(CT0(F23)) = 454.

Are there arbitrarily large q with d(CS) > d(CT0) and also with
d(CS) = d(CT0)?
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The Corresponding Curves

The span of the monomials corresponding to all lattice
points in T0 is the family of polynomials

Ax2y + Bxy2 + Cxy + D

The ones from S all have C = 0.
Note total degree is ≤ 3 – if ABD 6= 0, the variety is
irreducible, hence a curve of (arithmetic) genus 1. The
family contains nodal cubics; smooth ones are elliptic
curves.
To understand d for corresponding codes, need to know
how many Fq-rational points they can have
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More Properties

The cubic curves from T0 with AB 6= 0 have three flexes on
the line at infinity. How can we see this?

Homogenized, equation is:
AX 2Y + BXY 2 + CXYZ + DZ 3 = 0.
For instance, at [X : Y : Z ] = [1 : 0 : 0], the tangent line is
Y = 0, and this meets curve with multiplicity 3 – a “flex
tangent.”
Flexes ⇔ points of order 3 in the group law, and the three
points at infinity form a subgroup of order 3
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A “Universal Family”

In fact, this is the so-called “Hessian family,” a well-known
sort of universal family for elliptic curves over Fq with
nontrivial 3-torsion subgroups

For simplicity, we’ll stick to cases p ≥ 5.
Can easily convert to Weierstrass form, to look at
j-invariant
For a Weierstrass cubic u2 = v3 + αv + β,

j = 1728
4α3

4α3 + 27β2 .

Curves from S with ABD 6= 0 always correspond to smooth
elliptic curves with j = 0
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Supersingular Curves

When p ≡ 2 mod 3 for an odd prime p, elliptic curves with
j = 0 are supersingular

Terminological quirk here: supersingular 6⇒ singular –
these are smooth elliptic curves, but “special” in several
ways
There are many equivalent characterizations of this
property
For us, the one that is most relevant (because it directly
says someting about numbers of Fph -rational points) is that
the trace of Frobenius is zero.
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Supersingular Curves

This implies that for E a supersingular curve,

|E(Fph)| =


ph + 1 h odd
ph + 1 + 2ph/2 if h ≡ 2 mod 4
ph + 1− 2ph/2 if h ≡ 0 mod 4.

In other words, supersingular elliptic curves defined over Fp
achieve the Hasse-Weil upper bound over Fph when
h ≡ 2 mod 4. On the other hand, they achieve the Hasse-Weil
lower bound over Fph when h ≡ 0 mod 4.
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Second Main Theorem

Theorem 5
Let p be odd and p ≡ 2 mod 3. Then

d(CS(Fp)) = (p − 1)2 − (p − 1) > d(CT0(Fp)).

Proof. The elliptic curves from S are supersingular, so all of the
codewords of CS(Fp) obtained from evaluation of
Axy2 + Bxy2 + D with ABD 6= 0 will have weight

(p − 1)2 − (p + 1− 3) > (p − 1)2 − (p − 1).

On the other hand, there are also codewords of weight
(p − 1)2 − (p − 1) from polynomials with one coefficient equal
to zero. Those give the minimum weight words in this case.
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Proof, Concluded

By a theorem of Waterhouse, there are elliptic curves over Fp
with

|E(Fp)| = p + 1 + t

for all integers t with t ≤ b2√pc and gcd(t , p) = 1 (as well as
some other possibilities). By the universality of our family for
curves with nontrivial 3-torsion, there will be curves here with
p + 1 + t points rational over Fp if t is the largest integer
satisfying t ≤ b2√pc, t prime to p, and such that 3|(p + 1 + t).
These give codewords of considerably smaller weight, close to

(p − 1)2 − (p + 1 + 2
√

p − 3).

So d for the code from S will be strictly larger than d for the
code from T0 for all such p. �
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”Reality Check”

Go back and look at the experimental data from before!
For instance p = 23 vs. p = 19.

There are similar patterns for the CP and CS codes from all
polygons where the Minkowski-decomposable Q ⊂ P of
maximal length contains a term lattice equivalent to T0.
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Conclusion

There are contributions both from

1 geometry of P, S, Minkowski decompositions, etc., and
2 arithmetic of rational points of curves over Fq

to the minimum distance of generalized toric surface codes.
Very subtle and interesting phenomena!

John B. Little Toric Surface Codes


	Background
	Definitions
	History of Previous Work
	Some Examples
	Minkowski Sums

	Generalized Toric Surface Codes
	Motivating Example
	Explanation
	Factorizations For Polynomials in one variable
	One Application

	The Exceptional Triangle
	Setting Up
	Curves With Non-Trivial 3-Torsion
	Role of Supersingular Curves


