Algebraic Codes for Error Control

John B. Little

little -at- mathcs -dot- holycross -dot- edu
Department of Mathematics and Computer Science
College of the Holy Cross

SACNAS National Conference
"An Abstract Look at Algebra" - October 16, 2009

Outline

(9) Coding Basics
(2) Reed-Solomon Codes
(3) List Decoding Algorithms

A bit of history

- Beginning of coding theory as a mathematical and engineering subject: a 1948 paper by Claude Shannon called "A Mathematical Theory of Communication."
- Shannon lived from 1916 to 2001, and spent most of his working career at Bell Labs and MIT.
- He also made fundamental contributions to cryptography and the design of computer circuitry in earlier work coming from his Ph.D. thesis.

Shannon's conceptual communication set-up

Examples

This is a very general framework, incorporating examples such as

- communication with deep space exploration craft (Mariner, Voyager, etc. - the most important early application)
- storing/retrieving information in computer memory
- storing/retrieving audio information (CDs)
- storing/rerieving video information (DVD and Blu-Ray disks)
- wireless communication

Reliability, not (necessarily) secrecy!

- A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.

Reliability, not (necessarily) secrecy!

- A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.
- Reliability rather than secrecy

Reliability, not (necessarily) secrecy!

- A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.
- Reliability rather than secrecy
- Cryptography is the science of designing communications for secrecy, security.

Reliability, not (necessarily) secrecy!

- A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.
- Reliability rather than secrecy
- Cryptography is the science of designing communications for secrecy, security.
- Definitely related, but not our main focus in this talk!

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!

- If you can read this message, then you're doing error correction!

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!

- If you can read this message, then you're doing error correction!
- In all human languages, words are usually "far enough apart" that even if some of a message is corrupted, it may still be intelligible

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!

- If you can read this message, then you're doing error correction!
- In all human languages, words are usually "far enough apart" that even if some of a message is corrupted, it may still be intelligible
- Usually, only a few legal words that are "close" to what is contained in the received message.

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!

- If you can read this message, then you're doing error correction!
- In all human languages, words are usually "far enough apart" that even if some of a message is corrupted, it may still be intelligible
- Usually, only a few legal words that are "close" to what is contained in the received message.
- Robustness in the presence of noise is a very desirable feature that can be "designed in" using abstract algebra!

Mathematical setting

- Messages
- are divided into "words" or blocks of a fixed length, k,
- use symbols from a finite alphabet A with some number q of symbols, typically the finite field \mathbb{F}_{q}

Mathematical setting

- Messages
- are divided into "words" or blocks of a fixed length, k,
- use symbols from a finite alphabet A with some number q of symbols, typically the finite field \mathbb{F}_{q}
- Simplest case (also best adapted to electronic hardware) is an alphabet with two symbols: $A=\{0,1\}$, identified with the finite field \mathbb{F}_{2} (addition and multiplication modulo 2 - so $1+1=0$), but we will see others later also.

Mathematical setting

- Messages
- are divided into "words" or blocks of a fixed length, k,
- use symbols from a finite alphabet A with some number q of symbols, typically the finite field \mathbb{F}_{q}
- Simplest case (also best adapted to electronic hardware) is an alphabet with two symbols: $A=\{0,1\}$, identified with the finite field \mathbb{F}_{2} (addition and multiplication modulo 2 - so $1+1=0$), but we will see others later also.
- Usually, all strings or k-tuples in \mathbb{F}_{q}^{k} are considered as possible words that can appear in a message.

Encoding and decoding

To correct errors, redundancy must included in the encoded message. One way:

- encoded message consists of strings of fixed length $n>k$ over the same alphabet.

Encoding and decoding

To correct errors, redundancy must included in the encoded message. One way:

- encoded message consists of strings of fixed length $n>k$ over the same alphabet.
- Then encoding and decoding are functions:

$$
E: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n} \quad D: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}
$$

where E is $1-1$, and $D \circ E=I$ on \mathbb{F}_{q}^{k}.

Encoding and decoding

To correct errors, redundancy must included in the encoded message. One way:

- encoded message consists of strings of fixed length $n>k$ over the same alphabet.
- Then encoding and decoding are functions:

$$
E: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n} \quad D: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}
$$

where E is $1-1$, and $D \circ E=I$ on \mathbb{F}_{q}^{k}.

- D might also take a "FAIL" value on some words in the complement of $\operatorname{Im}(E)$ containing too many errors to be decodable.

Encoding and decoding

To correct errors, redundancy must included in the encoded message. One way:

- encoded message consists of strings of fixed length $n>k$ over the same alphabet.
- Then encoding and decoding are functions:

$$
E: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n} \quad D: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}
$$

where E is $1-1$, and $D \circ E=I$ on \mathbb{F}_{q}^{k}.

- D might also take a "FAIL" value on some words in the complement of $\operatorname{Im}(E)$ containing too many errors to be decodable.
- $C=\operatorname{Im}(E)$ is the code. Any such C is a block code of length n.

Errors

- Channel errors replace a codeword c by a received word $x \neq c$.

Errors

- Channel errors replace a codeword c by a received word $x \neq c$.
- We can think of $x=c+e$, where $e \in \mathbb{F}_{q}^{n}$ is the error vector.

Errors

- Channel errors replace a codeword c by a received word $x \neq c$.
- We can think of $x=c+e$, where $e \in \mathbb{F}_{q}^{n}$ is the error vector.
- The error weight

$$
\mathrm{wt}(e)=\left|\left\{i \mid e_{i} \neq 0\right\}\right|
$$

determines how many entries of x are corrupted.

Errors

- Channel errors replace a codeword c by a received word $x \neq c$.
- We can think of $x=c+e$, where $e \in \mathbb{F}_{q}^{n}$ is the error vector.
- The error weight

$$
\mathrm{wt}(e)=\left|\left\{i \mid e_{i} \neq 0\right\}\right|
$$

determines how many entries of x are corrupted.

- Example: $\mathrm{wt}(11000101)=4$.

Errors

- Channel errors replace a codeword c by a received word $x \neq c$.
- We can think of $x=c+e$, where $e \in \mathbb{F}_{q}^{n}$ is the error vector.
- The error weight

$$
\mathrm{wt}(e)=\left|\left\{i \mid e_{i} \neq 0\right\}\right|
$$

determines how many entries of x are corrupted.

- Example: $\mathrm{wt}(11000101)=4$.
- Decoding can be seen as finding e (somehow), then subtracting it off to recover c.

Hamming distance

Definition (Hamming Distance)

Let $x, y \in \mathbb{F}_{q}^{n}$. Then
$d(x, y)=\left|\left\{i \in\{1, \ldots, n\}: x_{i} \neq y_{i}\right\}\right|=\operatorname{wt}(x-y)$.

Theorem

Let C be a code in \mathbb{F}_{q}^{n}. If $d\left(c, c^{\prime}\right) \geq 2 t+1$ for all distinct $c, c^{\prime} \in C$, then all error vectors of weight t or less will be corrected by the "nearest-neighbor" decoding function:

$$
D(x)=E^{-1}(c \in C: d(x, c) \text { is minimal })
$$

Idea of the proof

Notation: $B(c, t)=\left\{x \in \mathbb{F}_{q}^{n} \mid d(x, c) \leq t\right\}$ ("Hamming ball")

Condition on $d\left(c, c^{\prime}\right)$ implies $B(c, t) \cap B\left(c^{\prime}, t\right)=\emptyset$ whenever $c \neq c^{\prime} \in C$. If c is sent and $\mathrm{wt}(e) \leq t$, then $c+e$ is still closer to c than it is to any other codeword c^{\prime}, and nearest neighbor decoding will correct the error.

Minimum distance

Leads to ...

Definition

Let C be a code in \mathbb{F}_{q}^{n}. The minimum distance of C, denoted d or $d(C)$, is $d=\min _{c \neq c^{\prime} \in C} d\left(c, c^{\prime}\right)$.
(That is, d gives the smallest separation between any two distinct codewords.) If $d=13$, for instance, then any error of weight ≤ 6 in a received word can be corrected by nearest-neighbor decoding.

Reed-Solomon - More History

- RS codes are named after Irving Reed and Gustave Solomon.
- Date to 1960, when Reed and Solomon worked at MIT's Lincoln Labs in Massachusetts.
- Reed, who is still living, earned his Ph.D. at Cal Tech and later taught at USC before retiring.
- Solomon, who died in 1996, earned his Ph.D. at MIT, and consulted for many years at JPL in Pasadena.

General Properties

Reed-Solomon codes are codes over an alphabet \mathbb{F}_{q} (usually $q=2^{r}$ for some $r=4,8,16$, etc.) with many good properties:

- They are linear - set of codewords is a vector subspace of \mathbb{F}_{q}^{n} for $n=q-1$, and cyclic - set of codewords is closed under cyclic shifts

General Properties

Reed-Solomon codes are codes over an alphabet \mathbb{F}_{q} (usually $q=2^{r}$ for some $r=4,8,16$, etc.) with many good properties:

- They are linear - set of codewords is a vector subspace of \mathbb{F}_{q}^{n} for $n=q-1$, and cyclic - set of codewords is closed under cyclic shifts
- Best possible d for their n and k - meet the Singleton bound: $d \leq n-k+1$

General Properties

Reed-Solomon codes are codes over an alphabet \mathbb{F}_{q} (usually $q=2^{r}$ for some $r=4,8,16$, etc.) with many good properties:

- They are linear - set of codewords is a vector subspace of \mathbb{F}_{q}^{n} for $n=q-1$, and cyclic - set of codewords is closed under cyclic shifts
- Best possible d for their n and k - meet the Singleton bound: $d \leq n-k+1$
- Good encoding method (via polynomial division)

General Properties

Reed-Solomon codes are codes over an alphabet \mathbb{F}_{q} (usually $q=2^{r}$ for some $r=4,8,16$, etc.) with many good properties:

- They are linear - set of codewords is a vector subspace of \mathbb{F}_{q}^{n} for $n=q-1$, and cyclic - set of codewords is closed under cyclic shifts
- Best possible d for their n and k - meet the Singleton bound: $d \leq n-k+1$
- Good encoding method (via polynomial division)
- Berlekamp-Massey, Sugiyama (Euclidean Algorithm) decoders - efficiently correct all errors of weight $\leq t$, heavily based on abstract algebra

General Properties

Reed-Solomon codes are codes over an alphabet \mathbb{F}_{q} (usually $q=2^{r}$ for some $r=4,8,16$, etc.) with many good properties:

- They are linear - set of codewords is a vector subspace of \mathbb{F}_{q}^{n} for $n=q-1$, and cyclic - set of codewords is closed under cyclic shifts
- Best possible d for their n and k - meet the Singleton bound: $d \leq n-k+1$
- Good encoding method (via polynomial division)
- Berlekamp-Massey, Sugiyama (Euclidean Algorithm) decoders - efficiently correct all errors of weight $\leq t$, heavily based on abstract algebra
- Widely used in applications (e.g. CD audio system, computer memory, etc.)

Constructing RS codes

- Start with the desired dimension $k<q$.

Constructing RS codes

- Start with the desired dimension $k<q$.
- Let $L_{k}=\operatorname{Span}\left\{1, u, u^{2}, \ldots, u^{k-1}\right\} \subset \mathbb{F}_{q}[u]$.

Constructing RS codes

- Start with the desired dimension $k<q$.
- Let $L_{k}=\operatorname{Span}\left\{1, u, u^{2}, \ldots, u^{k-1}\right\} \subset \mathbb{F}_{q}[u]$.
- We can define a code of dimension k by evaluating polynomials $f \in L_{k}$ to get the codeword entries:

$$
\begin{aligned}
e v: L_{k} & \longrightarrow \mathbb{F}_{q}^{q-1} \\
f & \longmapsto\left(f(1), f(\alpha), f\left(\alpha^{2}\right), \ldots, f\left(\alpha^{q-2}\right)\right)
\end{aligned}
$$

(where α is a primitive element of \mathbb{F}_{q}, so $\alpha^{q-1}=1$).

Constructing RS codes

- Start with the desired dimension $k<q$.
- Let $L_{k}=\operatorname{Span}\left\{1, u, u^{2}, \ldots, u^{k-1}\right\} \subset \mathbb{F}_{q}[u]$.
- We can define a code of dimension k by evaluating polynomials $f \in L_{k}$ to get the codeword entries:

$$
\begin{aligned}
e v: L_{k} & \longrightarrow \mathbb{F}_{q}^{q-1} \\
f & \longmapsto\left(f(1), f(\alpha), f\left(\alpha^{2}\right), \ldots, f\left(\alpha^{q-2}\right)\right)
\end{aligned}
$$

(where α is a primitive element of \mathbb{F}_{q}, so $\alpha^{q-1}=1$).

- The image of $e v$ is the RS code - a vector subspace of dimension k in \mathbb{F}_{q}^{n} for $n=q-1$.

$d \Leftrightarrow$ a basic fact for polynomials(!)

- Linearity \Rightarrow in computation of $d(x, y)=\mathrm{wt}(x-y), x-y$ is another codeword.

$d \Leftrightarrow$ a basic fact for polynomials(!)

- Linearity \Rightarrow in computation of $d(x, y)=\mathrm{wt}(x-y), x-y$ is another codeword.
- So, determining $d \Leftrightarrow$ asking how many zeroes can a nonzero polynomial in L_{k} have?

$d \Leftrightarrow$ a basic fact for polynomials(!)

- Linearity \Rightarrow in computation of $d(x, y)=\mathrm{wt}(x-y), x-y$ is another codeword.
- So, determining $d \Leftrightarrow$ asking how many zeroes can a nonzero polynomial in L_{k} have?
- The answer is clear $-\operatorname{deg} f(u) \leq k-1$ for all $f(u) \in L_{k}$, so no more than $k-1$ roots(!)
- Proof: By division, $\beta \in \mathbb{F}_{q}$ is a root of $f(u)$
$\Leftrightarrow f(u)=(u-\beta) q(x)$. Then $\operatorname{deg}(q(u))=\operatorname{deg}(f(u))-1 . \square$

$d \Leftrightarrow$ a basic fact for polynomials(!)

- Linearity \Rightarrow in computation of $d(x, y)=\mathrm{wt}(x-y), x-y$ is another codeword.
- So, determining $d \Leftrightarrow$ asking how many zeroes can a nonzero polynomial in L_{k} have?
- The answer is clear $-\operatorname{deg} f(u) \leq k-1$ for all $f(u) \in L_{k}$, so no more than $k-1$ roots(!)
- Proof: By division, $\beta \in \mathbb{F}_{q}$ is a root of $f(u)$ $\Leftrightarrow f(u)=(u-\beta) q(x)$. Then $\operatorname{deg}(q(u))=\operatorname{deg}(f(u))-1 . \square$
- Moreover, some $f(u)$ of degree $k-1$ have exactly $k-1$ distinct roots.

$d \Leftrightarrow$ a basic fact for polynomials(!)

- Linearity \Rightarrow in computation of $d(x, y)=\mathrm{wt}(x-y), x-y$ is another codeword.
- So, determining $d \Leftrightarrow$ asking how many zeroes can a nonzero polynomial in L_{k} have?
- The answer is clear $-\operatorname{deg} f(u) \leq k-1$ for all $f(u) \in L_{k}$, so no more than $k-1$ roots(!)
- Proof: By division, $\beta \in \mathbb{F}_{q}$ is a root of $f(u)$ $\Leftrightarrow f(u)=(u-\beta) q(x)$. Then $\operatorname{deg}(q(u))=\operatorname{deg}(f(u))-1 . \square$
- Moreover, some $f(u)$ of degree $k-1$ have exactly $k-1$ distinct roots.
- So minimum weight in $\operatorname{ev}\left(L_{k-1}\right)$ is $d=(q-1)-(k-1)=n-k+1$.

A Recent Development - List Decoding

- Analogy: Say a misprint occurs in something you are reading - "bawn"

A Recent Development - List Decoding

- Analogy: Say a misprint occurs in something you are reading - "bawn"
- Possible corrections changing just one letter: "bawl," "fawn," "lawn," "pawn," "barn," etc. - not too many possibilities and maybe can correct from context ...

A Recent Development - List Decoding

- Analogy: Say a misprint occurs in something you are reading - "bawn"
- Possible corrections changing just one letter: "bawl," "fawn," "lawn," "pawn," "barn," etc. - not too many possibilities and maybe can correct from context ...
- "Traditional" decoding methods assume $d=2 t+1$ and e with $\mathrm{w}(e) \leq t$ occurs. By Theorem before, \exists ! closest codeword c to x and the decoder finds it. (But if an error of weight $>t$ occurs, these often fail.)

A Recent Development - List Decoding

- Analogy: Say a misprint occurs in something you are reading - "bawn"
- Possible corrections changing just one letter: "bawl," "fawn," "lawn," "pawn," "barn," etc. - not too many possibilities and maybe can correct from context ...
- "Traditional" decoding methods assume $d=2 t+1$ and e with $\mathrm{w}(e) \leq t$ occurs. By Theorem before, \exists ! closest codeword c to x and the decoder finds it. (But if an error of weight $>t$ occurs, these often fail.)
- List decoding idea is to extend the error weights that can be handled by making decoder output a list of all codewords within some decoding radius $\tau \geq t$ of x^{\prime}.

Algebraic Methods - Interpolation

- List decoding algorithms developed by M. Sudan, V. Guruswami, and others.

Algebraic Methods - Interpolation

- List decoding algorithms developed by M. Sudan, V. Guruswami, and others.
- Proceed in two steps after choice of decoding radius τ.

Algebraic Methods - Interpolation

- List decoding algorithms developed by M. Sudan, V. Guruswami, and others.
- Proceed in two steps after choice of decoding radius τ.
- Interpolation - First, a two-variable polynomial $Q(u, v)$ is computed to interpolate the received word $x: Q\left(\alpha^{i}, x_{i}\right)=0$ for all $0 \leq i \leq q-1$ (possibly with an associated multiplicity m at all of the points).

Factorization

- Factorization - Under suitable hypotheses, any polynomial $Q(u, v)$ as in the first step must factor as

$$
Q(u, v)=\left(v-f_{1}(u)\right) \cdots\left(v-f_{L}(u)\right) R(u)
$$

with $\operatorname{deg} f_{i}(u) \leq k-1$.

- Once the factorization is found, each $v-f_{i}(u)$ corresponds to an RS codeword c_{i} and the algorithm returns the list $\left\{c_{1}, \ldots, c_{L}\right\}$.

Factorization

- Factorization - Under suitable hypotheses, any polynomial $Q(u, v)$ as in the first step must factor as

$$
Q(u, v)=\left(v-f_{1}(u)\right) \cdots\left(v-f_{L}(u)\right) R(u)
$$

with $\operatorname{deg} f_{i}(u) \leq k-1$.

- Once the factorization is found, each $v-f_{i}(u)$ corresponds to an RS codeword c_{i} and the algorithm returns the list $\left\{c_{1}, \ldots, c_{L}\right\}$.
- Again under suitable hypotheses, any RS codeword distance $\leq \tau$ from the received word must appear in the list.

Factorization

- Factorization - Under suitable hypotheses, any polynomial $Q(u, v)$ as in the first step must factor as

$$
Q(u, v)=\left(v-f_{1}(u)\right) \cdots\left(v-f_{L}(u)\right) R(u)
$$

with $\operatorname{deg} f_{i}(u) \leq k-1$.

- Once the factorization is found, each $v-f_{i}(u)$ corresponds to an RS codeword c_{i} and the algorithm returns the list $\left\{c_{1}, \ldots, c_{L}\right\}$.
- Again under suitable hypotheses, any RS codeword distance $\leq \tau$ from the received word must appear in the list.
- Efficient algorithms for both steps are known drawing on techniques from symbolic algebraic computation with polynomials in several variables!

Suggestions For Further Reading

- For More on Coding Theory Basics:
- W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
- For More On List Decoding For RS Codes:
- V. Guruswami, List Decoding of Error Correcting Codes, Springer Lecture Notes in Computer Science 3282, Springer-Verlag, Berlin, 2004.
- T. Moon, Error Correction Coding, Wiley-Interscience, Hoboken, 2005.

Thanks for your attention!

