
Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Algebraic Codes for Error Control

John B. Little

little -at- mathcs -dot- holycross -dot- edu
Department of Mathematics and Computer Science

College of the Holy Cross

SACNAS National Conference
“An Abstract Look at Algebra” – October 16, 2009

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Outline

1 Coding Basics

2 Reed-Solomon Codes

3 List Decoding Algorithms

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

A bit of history

Beginning of coding theory as a mathematical and
engineering subject: a 1948 paper by Claude Shannon
called “A Mathematical Theory of Communication.”
Shannon lived from 1916 to 2001, and spent most of his
working career at Bell Labs and MIT.
He also made fundamental contributions to cryptography
and the design of computer circuitry in earlier work coming
from his Ph.D. thesis.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Shannon’s conceptual communication set-up

message noise

↓ ↓
encoder → trans. → channel → rec. → decoder

↓
message

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Examples

This is a very general framework, incorporating examples such
as

communication with deep space exploration craft (Mariner,
Voyager, etc. – the most important early application)
storing/retrieving information in computer memory
storing/retrieving audio information (CDs)
storing/rerieving video information (DVD and Blu-Ray
disks)
wireless communication

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Reliability, not (necessarily) secrecy!

A main goal of coding theory is the design of coding
schemes that achieve error control : ability to detect and
correct errors in received messages.

Reliability rather than secrecy
Cryptography is the science of designing communications
for secrecy, security.
Definitely related, but not our main focus in this talk!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Reliability, not (necessarily) secrecy!

A main goal of coding theory is the design of coding
schemes that achieve error control : ability to detect and
correct errors in received messages.
Reliability rather than secrecy

Cryptography is the science of designing communications
for secrecy, security.
Definitely related, but not our main focus in this talk!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Reliability, not (necessarily) secrecy!

A main goal of coding theory is the design of coding
schemes that achieve error control : ability to detect and
correct errors in received messages.
Reliability rather than secrecy
Cryptography is the science of designing communications
for secrecy, security.

Definitely related, but not our main focus in this talk!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Reliability, not (necessarily) secrecy!

A main goal of coding theory is the design of coding
schemes that achieve error control : ability to detect and
correct errors in received messages.
Reliability rather than secrecy
Cryptography is the science of designing communications
for secrecy, security.
Definitely related, but not our main focus in this talk!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!
If you can read this message, then you’re doing error
correction!

In all human languages, words are usually “far enough
apart” that even if some of a message is corrupted, it may
still be intelligible
Usually, only a few legal words that are “close” to what is
contained in the received message.
Robustness in the presence of noise is a very desirable
feature that can be “designed in” using abstract algebra!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!
If you can read this message, then you’re doing error
correction!
In all human languages, words are usually “far enough
apart” that even if some of a message is corrupted, it may
still be intelligible

Usually, only a few legal words that are “close” to what is
contained in the received message.
Robustness in the presence of noise is a very desirable
feature that can be “designed in” using abstract algebra!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!
If you can read this message, then you’re doing error
correction!
In all human languages, words are usually “far enough
apart” that even if some of a message is corrupted, it may
still be intelligible
Usually, only a few legal words that are “close” to what is
contained in the received message.

Robustness in the presence of noise is a very desirable
feature that can be “designed in” using abstract algebra!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Error correction

Bienvenqdos a Daljas, SACNAS Cohferenke Atsendeef!
If you can read this message, then you’re doing error
correction!
In all human languages, words are usually “far enough
apart” that even if some of a message is corrupted, it may
still be intelligible
Usually, only a few legal words that are “close” to what is
contained in the received message.
Robustness in the presence of noise is a very desirable
feature that can be “designed in” using abstract algebra!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Mathematical setting

Messages
are divided into “words” or blocks of a fixed length, k ,
use symbols from a finite alphabet A with some number q
of symbols, typically the finite field Fq

Simplest case (also best adapted to electronic hardware)
is an alphabet with two symbols: A = {0,1}, identified with
the finite field F2 (addition and multiplication modulo 2 – so
1 + 1 = 0), but we will see others later also.
Usually, all strings or k -tuples in Fk

q are considered as
possible words that can appear in a message.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Mathematical setting

Messages
are divided into “words” or blocks of a fixed length, k ,
use symbols from a finite alphabet A with some number q
of symbols, typically the finite field Fq

Simplest case (also best adapted to electronic hardware)
is an alphabet with two symbols: A = {0,1}, identified with
the finite field F2 (addition and multiplication modulo 2 – so
1 + 1 = 0), but we will see others later also.

Usually, all strings or k -tuples in Fk
q are considered as

possible words that can appear in a message.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Mathematical setting

Messages
are divided into “words” or blocks of a fixed length, k ,
use symbols from a finite alphabet A with some number q
of symbols, typically the finite field Fq

Simplest case (also best adapted to electronic hardware)
is an alphabet with two symbols: A = {0,1}, identified with
the finite field F2 (addition and multiplication modulo 2 – so
1 + 1 = 0), but we will see others later also.
Usually, all strings or k -tuples in Fk

q are considered as
possible words that can appear in a message.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Encoding and decoding

To correct errors, redundancy must included in the encoded
message. One way:

encoded message consists of strings of fixed length n > k
over the same alphabet.

Then encoding and decoding are functions:

E : Fk
q → Fn

q D : Fn
q → Fk

q

where E is 1-1, and D ◦ E = I on Fk
q.

D might also take a “FAIL” value on some words in the
complement of Im(E) containing too many errors to be
decodable.
C = Im(E) is the code. Any such C is a block code of
length n.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Encoding and decoding

To correct errors, redundancy must included in the encoded
message. One way:

encoded message consists of strings of fixed length n > k
over the same alphabet.
Then encoding and decoding are functions:

E : Fk
q → Fn

q D : Fn
q → Fk

q

where E is 1-1, and D ◦ E = I on Fk
q.

D might also take a “FAIL” value on some words in the
complement of Im(E) containing too many errors to be
decodable.
C = Im(E) is the code. Any such C is a block code of
length n.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Encoding and decoding

To correct errors, redundancy must included in the encoded
message. One way:

encoded message consists of strings of fixed length n > k
over the same alphabet.
Then encoding and decoding are functions:

E : Fk
q → Fn

q D : Fn
q → Fk

q

where E is 1-1, and D ◦ E = I on Fk
q.

D might also take a “FAIL” value on some words in the
complement of Im(E) containing too many errors to be
decodable.

C = Im(E) is the code. Any such C is a block code of
length n.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Encoding and decoding

To correct errors, redundancy must included in the encoded
message. One way:

encoded message consists of strings of fixed length n > k
over the same alphabet.
Then encoding and decoding are functions:

E : Fk
q → Fn

q D : Fn
q → Fk

q

where E is 1-1, and D ◦ E = I on Fk
q.

D might also take a “FAIL” value on some words in the
complement of Im(E) containing too many errors to be
decodable.
C = Im(E) is the code. Any such C is a block code of
length n.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Errors

Channel errors replace a codeword c by a received word
x 6= c.

We can think of x = c + e, where e ∈ Fn
q is the error vector.

The error weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.
Example: wt(11000101) = 4.
Decoding can be seen as finding e (somehow), then
subtracting it off to recover c.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Errors

Channel errors replace a codeword c by a received word
x 6= c.
We can think of x = c + e, where e ∈ Fn

q is the error vector.

The error weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.
Example: wt(11000101) = 4.
Decoding can be seen as finding e (somehow), then
subtracting it off to recover c.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Errors

Channel errors replace a codeword c by a received word
x 6= c.
We can think of x = c + e, where e ∈ Fn

q is the error vector.
The error weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.

Example: wt(11000101) = 4.
Decoding can be seen as finding e (somehow), then
subtracting it off to recover c.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Errors

Channel errors replace a codeword c by a received word
x 6= c.
We can think of x = c + e, where e ∈ Fn

q is the error vector.
The error weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.
Example: wt(11000101) = 4.

Decoding can be seen as finding e (somehow), then
subtracting it off to recover c.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Errors

Channel errors replace a codeword c by a received word
x 6= c.
We can think of x = c + e, where e ∈ Fn

q is the error vector.
The error weight

wt(e) = |{i | ei 6= 0}|

determines how many entries of x are corrupted.
Example: wt(11000101) = 4.
Decoding can be seen as finding e (somehow), then
subtracting it off to recover c.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Hamming distance

Definition (Hamming Distance)

Let x , y ∈ Fn
q. Then

d(x , y) = |{i ∈ {1, . . . ,n} : xi 6= yi}| = wt(x − y).

Theorem
Let C be a code in Fn

q. If d(c, c′) ≥ 2t + 1 for all distinct
c, c′ ∈ C, then all error vectors of weight t or less will be
corrected by the “nearest-neighbor” decoding function:

D(x) = E−1(c ∈ C : d(x , c) is minimal).

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Idea of the proof

Notation: B(c, t) = {x ∈ Fn
q | d(x , c) ≤ t} (“Hamming ball”)

B(c, t)

&%
'$s -t

c
s

&%
'$
� t

c′ B(c′, t)

Condition on d(c, c′) implies B(c, t) ∩ B(c′, t) = ∅ whenever
c 6= c′ ∈ C. If c is sent and wt(e) ≤ t , then c + e is still closer to
c than it is to any other codeword c′, and nearest neighbor
decoding will correct the error.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Minimum distance

Leads to ...

Definition
Let C be a code in Fn

q. The minimum distance of C, denoted
d or d(C), is d = minc 6=c′∈C d(c, c′).

(That is, d gives the smallest separation between any two
distinct codewords.) If d = 13, for instance, then any error of
weight ≤ 6 in a received word can be corrected by
nearest-neighbor decoding.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Reed-Solomon – More History

RS codes are named after Irving Reed and Gustave
Solomon.
Date to 1960, when Reed and Solomon worked at MIT’s
Lincoln Labs in Massachusetts.
Reed, who is still living, earned his Ph.D. at Cal Tech and
later taught at USC before retiring.
Solomon, who died in 1996, earned his Ph.D. at MIT, and
consulted for many years at JPL in Pasadena.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

General Properties

Reed-Solomon codes are codes over an alphabet Fq (usually
q = 2r for some r = 4,8,16, etc.) with many good properties:

They are linear – set of codewords is a vector subspace of
Fn

q for n = q − 1, and cyclic – set of codewords is closed
under cyclic shifts

Best possible d for their n and k – meet the Singleton
bound: d ≤ n − k + 1
Good encoding method (via polynomial division)
Berlekamp-Massey, Sugiyama (Euclidean Algorithm)
decoders – efficiently correct all errors of weight ≤ t ,
heavily based on abstract algebra
Widely used in applications (e.g. CD audio system,
computer memory, etc.)

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

General Properties

Reed-Solomon codes are codes over an alphabet Fq (usually
q = 2r for some r = 4,8,16, etc.) with many good properties:

They are linear – set of codewords is a vector subspace of
Fn

q for n = q − 1, and cyclic – set of codewords is closed
under cyclic shifts
Best possible d for their n and k – meet the Singleton
bound: d ≤ n − k + 1

Good encoding method (via polynomial division)
Berlekamp-Massey, Sugiyama (Euclidean Algorithm)
decoders – efficiently correct all errors of weight ≤ t ,
heavily based on abstract algebra
Widely used in applications (e.g. CD audio system,
computer memory, etc.)

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

General Properties

Reed-Solomon codes are codes over an alphabet Fq (usually
q = 2r for some r = 4,8,16, etc.) with many good properties:

They are linear – set of codewords is a vector subspace of
Fn

q for n = q − 1, and cyclic – set of codewords is closed
under cyclic shifts
Best possible d for their n and k – meet the Singleton
bound: d ≤ n − k + 1
Good encoding method (via polynomial division)

Berlekamp-Massey, Sugiyama (Euclidean Algorithm)
decoders – efficiently correct all errors of weight ≤ t ,
heavily based on abstract algebra
Widely used in applications (e.g. CD audio system,
computer memory, etc.)

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

General Properties

Reed-Solomon codes are codes over an alphabet Fq (usually
q = 2r for some r = 4,8,16, etc.) with many good properties:

They are linear – set of codewords is a vector subspace of
Fn

q for n = q − 1, and cyclic – set of codewords is closed
under cyclic shifts
Best possible d for their n and k – meet the Singleton
bound: d ≤ n − k + 1
Good encoding method (via polynomial division)
Berlekamp-Massey, Sugiyama (Euclidean Algorithm)
decoders – efficiently correct all errors of weight ≤ t ,
heavily based on abstract algebra

Widely used in applications (e.g. CD audio system,
computer memory, etc.)

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

General Properties

Reed-Solomon codes are codes over an alphabet Fq (usually
q = 2r for some r = 4,8,16, etc.) with many good properties:

They are linear – set of codewords is a vector subspace of
Fn

q for n = q − 1, and cyclic – set of codewords is closed
under cyclic shifts
Best possible d for their n and k – meet the Singleton
bound: d ≤ n − k + 1
Good encoding method (via polynomial division)
Berlekamp-Massey, Sugiyama (Euclidean Algorithm)
decoders – efficiently correct all errors of weight ≤ t ,
heavily based on abstract algebra
Widely used in applications (e.g. CD audio system,
computer memory, etc.)

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Constructing RS codes

Start with the desired dimension k < q.

Let Lk = Span{1,u,u2, . . . ,uk−1} ⊂ Fq[u].
We can define a code of dimension k by evaluating
polynomials f ∈ Lk to get the codeword entries:

ev : Lk −→ Fq−1
q

f 7−→ (f (1), f (α), f (α2), . . . , f (αq−2))

(where α is a primitive element of Fq, so αq−1 = 1).
The image of ev is the RS code – a vector subspace of
dimension k in Fn

q for n = q − 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Constructing RS codes

Start with the desired dimension k < q.
Let Lk = Span{1,u,u2, . . . ,uk−1} ⊂ Fq[u].

We can define a code of dimension k by evaluating
polynomials f ∈ Lk to get the codeword entries:

ev : Lk −→ Fq−1
q

f 7−→ (f (1), f (α), f (α2), . . . , f (αq−2))

(where α is a primitive element of Fq, so αq−1 = 1).
The image of ev is the RS code – a vector subspace of
dimension k in Fn

q for n = q − 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Constructing RS codes

Start with the desired dimension k < q.
Let Lk = Span{1,u,u2, . . . ,uk−1} ⊂ Fq[u].
We can define a code of dimension k by evaluating
polynomials f ∈ Lk to get the codeword entries:

ev : Lk −→ Fq−1
q

f 7−→ (f (1), f (α), f (α2), . . . , f (αq−2))

(where α is a primitive element of Fq, so αq−1 = 1).

The image of ev is the RS code – a vector subspace of
dimension k in Fn

q for n = q − 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Constructing RS codes

Start with the desired dimension k < q.
Let Lk = Span{1,u,u2, . . . ,uk−1} ⊂ Fq[u].
We can define a code of dimension k by evaluating
polynomials f ∈ Lk to get the codeword entries:

ev : Lk −→ Fq−1
q

f 7−→ (f (1), f (α), f (α2), . . . , f (αq−2))

(where α is a primitive element of Fq, so αq−1 = 1).
The image of ev is the RS code – a vector subspace of
dimension k in Fn

q for n = q − 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

d ⇔ a basic fact for polynomials(!)

Linearity⇒ in computation of d(x , y) = wt(x − y), x − y is
another codeword.

So, determining d ⇔ asking how many zeroes can a
nonzero polynomial in Lk have?
The answer is clear – deg f (u) ≤ k − 1 for all f (u) ∈ Lk , so
no more than k − 1 roots(!)
Proof: By division, β ∈ Fq is a root of f (u)
⇔ f (u) = (u − β)q(x). Then deg(q(u)) = deg(f (u))− 1.
Moreover, some f (u) of degree k − 1 have exactly k − 1
distinct roots.
So minimum weight in ev(Lk−1) is
d = (q − 1)− (k − 1) = n − k + 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

d ⇔ a basic fact for polynomials(!)

Linearity⇒ in computation of d(x , y) = wt(x − y), x − y is
another codeword.
So, determining d ⇔ asking how many zeroes can a
nonzero polynomial in Lk have?

The answer is clear – deg f (u) ≤ k − 1 for all f (u) ∈ Lk , so
no more than k − 1 roots(!)
Proof: By division, β ∈ Fq is a root of f (u)
⇔ f (u) = (u − β)q(x). Then deg(q(u)) = deg(f (u))− 1.
Moreover, some f (u) of degree k − 1 have exactly k − 1
distinct roots.
So minimum weight in ev(Lk−1) is
d = (q − 1)− (k − 1) = n − k + 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

d ⇔ a basic fact for polynomials(!)

Linearity⇒ in computation of d(x , y) = wt(x − y), x − y is
another codeword.
So, determining d ⇔ asking how many zeroes can a
nonzero polynomial in Lk have?
The answer is clear – deg f (u) ≤ k − 1 for all f (u) ∈ Lk , so
no more than k − 1 roots(!)
Proof: By division, β ∈ Fq is a root of f (u)
⇔ f (u) = (u − β)q(x). Then deg(q(u)) = deg(f (u))− 1.

Moreover, some f (u) of degree k − 1 have exactly k − 1
distinct roots.
So minimum weight in ev(Lk−1) is
d = (q − 1)− (k − 1) = n − k + 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

d ⇔ a basic fact for polynomials(!)

Linearity⇒ in computation of d(x , y) = wt(x − y), x − y is
another codeword.
So, determining d ⇔ asking how many zeroes can a
nonzero polynomial in Lk have?
The answer is clear – deg f (u) ≤ k − 1 for all f (u) ∈ Lk , so
no more than k − 1 roots(!)
Proof: By division, β ∈ Fq is a root of f (u)
⇔ f (u) = (u − β)q(x). Then deg(q(u)) = deg(f (u))− 1.
Moreover, some f (u) of degree k − 1 have exactly k − 1
distinct roots.

So minimum weight in ev(Lk−1) is
d = (q − 1)− (k − 1) = n − k + 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

d ⇔ a basic fact for polynomials(!)

Linearity⇒ in computation of d(x , y) = wt(x − y), x − y is
another codeword.
So, determining d ⇔ asking how many zeroes can a
nonzero polynomial in Lk have?
The answer is clear – deg f (u) ≤ k − 1 for all f (u) ∈ Lk , so
no more than k − 1 roots(!)
Proof: By division, β ∈ Fq is a root of f (u)
⇔ f (u) = (u − β)q(x). Then deg(q(u)) = deg(f (u))− 1.
Moreover, some f (u) of degree k − 1 have exactly k − 1
distinct roots.
So minimum weight in ev(Lk−1) is
d = (q − 1)− (k − 1) = n − k + 1.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

A Recent Development – List Decoding

Analogy: Say a misprint occurs in something you are
reading – “bawn”

Possible corrections changing just one letter: “bawl,”
“fawn,” “lawn,” “pawn,” “barn,” etc. – not too many
possibilities and maybe can correct from context ...
“Traditional” decoding methods assume d = 2t + 1 and e
with w(e) ≤ t occurs. By Theorem before, ∃! closest
codeword c to x and the decoder finds it. (But if an error of
weight > t occurs, these often fail.)
List decoding idea is to extend the error weights that can
be handled by making decoder output a list of all
codewords within some decoding radius τ ≥ t of x ′.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

A Recent Development – List Decoding

Analogy: Say a misprint occurs in something you are
reading – “bawn”
Possible corrections changing just one letter: “bawl,”
“fawn,” “lawn,” “pawn,” “barn,” etc. – not too many
possibilities and maybe can correct from context ...

“Traditional” decoding methods assume d = 2t + 1 and e
with w(e) ≤ t occurs. By Theorem before, ∃! closest
codeword c to x and the decoder finds it. (But if an error of
weight > t occurs, these often fail.)
List decoding idea is to extend the error weights that can
be handled by making decoder output a list of all
codewords within some decoding radius τ ≥ t of x ′.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

A Recent Development – List Decoding

Analogy: Say a misprint occurs in something you are
reading – “bawn”
Possible corrections changing just one letter: “bawl,”
“fawn,” “lawn,” “pawn,” “barn,” etc. – not too many
possibilities and maybe can correct from context ...
“Traditional” decoding methods assume d = 2t + 1 and e
with w(e) ≤ t occurs. By Theorem before, ∃! closest
codeword c to x and the decoder finds it. (But if an error of
weight > t occurs, these often fail.)

List decoding idea is to extend the error weights that can
be handled by making decoder output a list of all
codewords within some decoding radius τ ≥ t of x ′.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

A Recent Development – List Decoding

Analogy: Say a misprint occurs in something you are
reading – “bawn”
Possible corrections changing just one letter: “bawl,”
“fawn,” “lawn,” “pawn,” “barn,” etc. – not too many
possibilities and maybe can correct from context ...
“Traditional” decoding methods assume d = 2t + 1 and e
with w(e) ≤ t occurs. By Theorem before, ∃! closest
codeword c to x and the decoder finds it. (But if an error of
weight > t occurs, these often fail.)
List decoding idea is to extend the error weights that can
be handled by making decoder output a list of all
codewords within some decoding radius τ ≥ t of x ′.

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Algebraic Methods – Interpolation

List decoding algorithms developed by M. Sudan, V.
Guruswami, and others.

Proceed in two steps after choice of decoding radius τ .
Interpolation – First, a two-variable polynomial Q(u, v) is
computed to interpolate the received word x : Q(αi , xi) = 0
for all 0 ≤ i ≤ q − 1 (possibly with an associated multiplicity
m at all of the points).

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Algebraic Methods – Interpolation

List decoding algorithms developed by M. Sudan, V.
Guruswami, and others.
Proceed in two steps after choice of decoding radius τ .

Interpolation – First, a two-variable polynomial Q(u, v) is
computed to interpolate the received word x : Q(αi , xi) = 0
for all 0 ≤ i ≤ q − 1 (possibly with an associated multiplicity
m at all of the points).

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Algebraic Methods – Interpolation

List decoding algorithms developed by M. Sudan, V.
Guruswami, and others.
Proceed in two steps after choice of decoding radius τ .
Interpolation – First, a two-variable polynomial Q(u, v) is
computed to interpolate the received word x : Q(αi , xi) = 0
for all 0 ≤ i ≤ q − 1 (possibly with an associated multiplicity
m at all of the points).

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Factorization

Factorization – Under suitable hypotheses, any
polynomial Q(u, v) as in the first step must factor as

Q(u, v) = (v − f1(u)) · · · (v − fL(u))R(u)

with deg fi(u) ≤ k − 1.
Once the factorization is found, each v − fi(u) corresponds
to an RS codeword ci and the algorithm returns the list
{c1, . . . , cL}.

Again under suitable hypotheses, any RS codeword
distance ≤ τ from the received word must appear in the
list.
Efficient algorithms for both steps are known drawing on
techniques from symbolic algebraic computation with
polynomials in several variables!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Factorization

Factorization – Under suitable hypotheses, any
polynomial Q(u, v) as in the first step must factor as

Q(u, v) = (v − f1(u)) · · · (v − fL(u))R(u)

with deg fi(u) ≤ k − 1.
Once the factorization is found, each v − fi(u) corresponds
to an RS codeword ci and the algorithm returns the list
{c1, . . . , cL}.
Again under suitable hypotheses, any RS codeword
distance ≤ τ from the received word must appear in the
list.

Efficient algorithms for both steps are known drawing on
techniques from symbolic algebraic computation with
polynomials in several variables!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Factorization

Factorization – Under suitable hypotheses, any
polynomial Q(u, v) as in the first step must factor as

Q(u, v) = (v − f1(u)) · · · (v − fL(u))R(u)

with deg fi(u) ≤ k − 1.
Once the factorization is found, each v − fi(u) corresponds
to an RS codeword ci and the algorithm returns the list
{c1, . . . , cL}.
Again under suitable hypotheses, any RS codeword
distance ≤ τ from the received word must appear in the
list.
Efficient algorithms for both steps are known drawing on
techniques from symbolic algebraic computation with
polynomials in several variables!

John B. Little Algebraic Codes for Error Control

Coding Basics
Reed-Solomon Codes

List Decoding Algorithms

Suggestions For Further Reading

For More on Coding Theory Basics:
W.C. Huffman and V. Pless, Fundamentals of
error-correcting codes, Cambridge University Press,
Cambridge, 2003.

For More On List Decoding For RS Codes:
V. Guruswami, List Decoding of Error Correcting Codes,
Springer Lecture Notes in Computer Science 3282,
Springer-Verlag, Berlin, 2004.
T. Moon, Error Correction Coding, Wiley-Interscience,
Hoboken, 2005.

Thanks for your attention!

John B. Little Algebraic Codes for Error Control

	Coding Basics
	Reed-Solomon Codes
	List Decoding Algorithms

