
ePiX Tutorial and

Reference Manual

Andrew D. Hwang

Department of Math and CS
College of the Holy Cross

Version 1.2.17, July, 2017

2

Contents

1 Introduction 7
1.1 Software Dependencies . 8

1.1.1 Setting up an Environment Under Windows 9
1.2 Installation . 9

1.2.1 Development . 10

2 Getting Started 11
2.1 Running ePiX . 11
2.2 The Drawing Model . 13
2.3 Tutorial . 13
2.4 C++ Basics . 21

2.4.1 File Format . 21
2.4.2 Variables and Functions . 21
2.4.3 Comments . 22
2.4.4 Program Execution . 22
2.4.5 Strings and Raw Output . 22
2.4.6 Conditionals and Loops . 23

2.5 Animation . 23
2.6 Layout Tricks . 25

2.6.1 Stereograms . 25
2.6.2 Inset Images . 25

3 Reference Manual 27
3.1 File Structure . 27
3.2 Picture Size and Aspect Ratio . 29
3.3 Color . 30

3.3.1 Constructors . 30
3.3.2 Color Operations . 31

3.4 Scene Attributes . 31
3.4.1 Angular Mode . 31
3.4.2 The Camera . 32
3.4.3 Clipping . 34

3

4 CONTENTS

3.4.4 Screens and Page Layout . 34

3.5 Drawing Attributes . 38

3.5.1 Filled Regions . 38

3.5.2 Paths . 38

3.5.3 Text Objects . 40

3.5.4 Color Declarations . 42

3.6 Creating and Drawing Objects . 43

3.6.1 Geometric Data Structures . 43

3.6.2 Path-Like Elements . 46

3.6.3 Coordinate Axes and Labels 48

3.6.4 The Path Class . 51

3.6.5 Function Plotting . 52

3.6.6 Calculus Plotting . 57

3.6.7 Non-Euclidean Geometry . 59

3.6.8 Data Plotting . 61

3.6.9 Legends . 65

3.7 More About C++ . 66

3.7.1 Names and Types . 66

3.7.2 Functions . 67

3.7.3 Mathematical Functions . 68

3.7.4 Basics of Classes . 69

3.7.5 References and Function Arguments 69

3.7.6 Overloading . 70

3.7.7 Scope . 70

3.7.8 Headers and Pre-Processing 71

3.7.9 Comparison with LATEX Syntax 71

3.8 Attribute Quick Reference . 72

4 Advanced Topics 75

4.1 Hidden Object Removal . 75

4.2 Extensions . 76

4.2.1 Header Files . 76

4.2.2 Compiling . 76

4.2.3 Runtime Linking . 78

4.2.4 Using Multiple Versions . 78

4.3 Programmer’s Guide . 79

4.3.1 External Packages . 79

4.3.2 User Interface . 80

4.3.3 Implementation Classes . 81

A Software Freedom 85

CONTENTS 5

B Acknowledgments 89

6 CONTENTS

Chapter 1

Introduction

ePiX, a collection of batch utilities, creates mathematically accurate figures, plots,
and animations containing LATEX typography. The input syntax is easy to learn, and
the user interface resembles that of LATEX itself: You prepare a scene description in a
text editor, then “compile” the input file into a picture. LATEX- and web-compatible
output types include a LATEX picture-like environment written with PSTricks, tikz,
or eepicmacros; vector images (eps, ps, and pdf); and bitmapped images and movies
(png, mng, and gif).

ePiX’s strengths include:

• Quality of output: ePiX creates accurate, publication-quality figures whose ap-
pearance matches that of LATEX. Typography may be put in a figure as easily
as in an ordinary LATEX document.

• Ease of use: Figure objects and their attributes are specified by simple, descrip-
tive commands.

• Flexibility: Objects are described by attributes and Cartesian location; as in
LATEX, printed appearance is determined when the figure is compiled. A well-
designed figure can be altered dramatically, yet precisely, with command-line
switches or minor changes to the input file.

• Power and extendibility: ePiX inherits the power of C++ as a programming
language; variables, data structures, loops, and recursion can be used to draw
complicated plots and figures with just a few lines of input. External code can
be incorporated in a figure with a command line option or by using a Makefile.

• Economy of storage and transmission: For a document containing many figures,
a compressed tar file of the LATEX sources and ePiX files is typically a few percent
the size of the compressed PostScript file.

• License: ePiX is free software. You are granted the right to use the program for
whatever purpose, and to inspect, modify, and re-distribute the source code, so

7

8 CHAPTER 1. INTRODUCTION

long as you do not restrict the rights of others to do the same. In short, the
license is similar to the terms under which theorems are published.

ePiX facilitates logical structuring of mathematical figures, as opposed to visual
structuring (or WYSIWYG), analogous to the relationship between LATEX and a word
processor. Stylistic defaults streamline the creation of simple figures, but there are few
internal restrictions on the contents or appearance of a figure; aesthetic and practical
decisions are left to you.

If you are a:

• Potential user, you may wish to skip immediately to “Software Dependencies”
before investing additional time.

• New user, proceed from here until you have enough understanding to run the
software, then experiment with the samples files while reading Chapter 2, or
return to the manual as needed.

• More advanced user, browse at will, probably starting with Chapter 3.

This manual is relatively conversational, and occasionally redundant, especially
between portions meant for readers at different levels of familiarity. Throughout, you
are assumed to be familiar with LATEX and basic linear algebra: the description of
points, vectors, lines, and planes in three-dimensional space. Other material, such as
C++ syntax, is introduced as needed.

1.1 Software Dependencies

If you run GNU/Linux, a BSD, or Solaris, you probably have (and can surely install)
all the external software needed to use ePiX. On Mac OS X, you will need the Apple
developer tools and an X server (such as XQuartz), and the free fink package manager
to build a GNU environment. For Windows, you’ll need to install Cygwin and several
packages. Detailed instructions are given below.

“Under the hood”, an input file is successively converted to a LATEX picture; dvi;
PostScript, pdf or eps; and if desired, to a bitmapped image or movie. Four shell
scripts—epix, laps, elaps, and flix—automate the various file format conversions.

ePiX consists of a C++ library, header, and shell scripts, and requires GNU bash

and a compiler for normal use. For complete functionality, you need g++ (Version 3.2
or later), bash, a text editor (ePiX works particularly well with emacs), a LATEX distri-
bution, Ghostscript, gv (or your favorite PS/PDF previewer), and GraphicsMagick.
GNU grep and sed are good to have. You may need additional “developer packages”
(binutils, make) in order to build ePiX. The more up to date your software is, the
better your experience is likely to be, but bleeding edge versions are not necessary,
or even always desirable.

1.2. INSTALLATION 9

Aside from their reliance on specific programs, ePiX’s shell scripts are written
using Unix-style pathnames. Thus, the most straightforward way to use ePiX is to
install a GNU environment.

Jay Belanger’s emacs mode allows you to write, compile, and view ePiX figures
without leaving emacs. If you use another editor, you’ll want to create template
source files so you don’t have to type boilerplate code each time you write a new
figure.

1.1.1 Setting up an Environment Under Windows

Cygwin can be used to run ePiX under Windows. Download setup.exe from
www.cygwin.com, then install the packages you need. The following are recom-
mended, and sufficient for the actions described in this manual.

(Archive) bzip2, tar

(Devel) binutils, coreutils, gcc, gcc-g++, make, sed

(Editors) emacs, emacs-X11, vim

(Graphics) GraphicsMagick, ghostscript-base, ghostscript-x11, gv

(Publishing) tetex (all)

(Shells) bash, bash-completion

(X11) X-start-menu-icons, X-startup-scripts,

XFree86-lib-compat, xorg-x11-fscl, xorg-x11-fsrv

1.2 Installation

ePiX is distributed over the World-Wide Web as source code. Packages may be
found at mathcs.holycross.edu/~ahwang/epix/ePiX.html The latest stable release
is also on the CTAN mirrors, in the graphics directory. (Some users of Red Hat
have reported file permission problems when unpacking the CTAN tarballs. If you
encounter this difficulty, please try downloading the sources from the project main
page.) Unpack the compressed tar file with the appropriate command:

tar -zxvf epix-x.y.z.tar.gz

tar -jxvf epix-x.y.z.tar.bz2

(x.y.z is the version number) or, if your tar doesn’t do decompression,

gunzip -c epix-x.y.z.tar.gz | tar -xvf -

bzcat epix-x.y.z.tar.bz2 | tar -xvf -

cd to the source directory, epix-x.y.z. The INSTALL file contains detailed installa-
tion instructions. If you’re impatient, the short of it is ./configure [--options];

make; make install. Run ./configure --help for a list of options.

10 CHAPTER 1. INTRODUCTION

By default, ePiX installs in subdirectories of /usr/local; if you want to install
elsewhere, supply ./configure with the appropriate --prefix. You may also want
to consult POST-INSTALL for information on setting your PATH variable so your shell
can find ePiX. The manual and sample files are in /usr/local/share/doc/epix.

1.2.1 Development

There are two mailing lists, one for user questions, one for development discussion.
Please visit savannah.nongnu.org/mail/?group=epix to subscribe.

Chapter 2

Getting Started

This chapter describes the basics of creating figures in ePiX for readers familiar with
LATEX but completely new to C++. No detailed knowledge of C++ is needed to use
ePiX, only a bit of grammar that is easily absorbed by example.

Section 2.1 describes the commands (shell scripts) comprising ePiX, and explains
how to set up a graphical environment using standard *nix programs. Section 2.2
briefly describes figure creation. Section 2.3 presents a few files side-by-side with their
output, and should be read at a computer so you can run the exercises.

2.1 Running ePiX

An “input file” is a human-written figure specification containing ePiX commands;
an “output file” is either a LATEX picture-like environment or a stand-alone vector
graphic. Conversion (“compiling” a figure) is accomplished with four shell scripts,
laps, epix, elaps, and flix. Each script has a preferred extension for its input files,
and is invoked with a command of the form

<script> [options] <input file(s)>

Often, no options are necessary. <script> --help describes <script>’s options.
Figure 2.3 (page 26) diagrams the shell scripts and the file types they process.

By default, output file names are constructed by replacing the input extension
with the (preferred) output extension. For brevity, extensions may be omitted. If the
script has doubts about your intent, it proceeds with default behavior and prints a
warning message.

The author is a great fan of TAB completion, under which a shell, based on what
has been typed so far, automatically fills in a command when the TAB key is pressed.
ePiX comes with code snippets that complete intelligently when the first part of a
command is one of the shell scripts. For example, if command completion is active,
typing epix TAB prints only names of epix input files. To use this feature, you must

11

12 CHAPTER 2. GETTING STARTED

install Ian MacDonald’s bash completion package. The INSTALL and POST INSTALL

files contain details.

Shell Scripts

laps

laps performs LATEX to PostScript/PDF conversion, and is independent of the rest
of ePiX. By default, laps invokes LATEX and dvips. The option --pdf creates a
PDF file by post-processing the PostScript with ps2pdf. Other TEX-family processors
(pslatex, pdftex, etc.) may be used instead of LATEX by invoking laps with an
appropriate option.

epix

epix compiles an input file into a LATEX picture. The input file should have extension
xp (for eXtended Picture). Jay Belanger’s emacs mode is Highly Recommended;
the installation procedure can be found in the POST INSTALL file. When this mode is
active, emacs automatically inserts a preamble template when a new xp file is created.
In addition, you can peruse ePiX’s info file, or format, compile, and preview files, all
from within emacs.

Output files from the script epix have extension eepic, after Conrad Kwok’s
enhancements to the LATEX picture environment. In Version 1.2, however, an output
file may contain PSTricks or tikz macros instead of eepic macros. A command
such as \input{myfile.eepic} incorporates an output file into a LATEX document.
The preamble must contain usepackage lines appropriate to the output format.

Format Required Package(s)
eepic epic,eepic,xcolor,rotating

pst pstricks,rotating

tikz tikz,rotating

elaps

elaps creates stand-alone vector images (eps or pdf) from epix input files or eepic
figures, even those not produced with epix. elaps automatically loads the LATEX
packages needed for features described in this manual. Additional LATEX packages
and dvips options may be specified on the command line. An elaps output file
is placed in a LATEX document with an \includegraphics command; the preamble
must contain \usepackage{graphicx} [sic].

flix

flix creates bitmapped images and movies, Section 2.5. Input files should have
extension flx, and must contain a valid epix header as well as additional code. Jay

2.2. THE DRAWING MODEL 13

Belanger’s emacs mode facilitates creation of flix files.

2.2 The Drawing Model

To draw a figure manually, you select a sheet of paper of appropriate size and add
paths, markers, and labels. These scene elements have attributes (line color, line
width, fill color, font size, etc.) affecting their appearance.

ePiX’s drawing model behaves similarly. A picture command sets the canvas

(or logical drawing area, a Cartesian rectangle) and the true size of the final figure.
A begin command initializes the “virtual paper” for drawing. Subsequent drawing

commands add objects to the scene: lines, curves, function plots, labels, and the like.
The printed appearance of scene elements is determined by the current “attribute
state” and controlled by style declaration which remain in effect until superseded.
Finally, an end command closes the figure and prints it to the output file.

In this manual, command descriptions follow a few conventions. Optional argu-
ments are enclosed in square brackets. A len argument is either a number (represent-
ing a length in pt) or a double-quoted string containing a number and a two-letter
LATEX length unit, such as "1.5pt" or "6cm". A color argument is a named pri-
mary (Red(), Cyan(), White(), etc.), or a Color specified by densities (RGB(r,g,b),
CMY(c,m,y), etc.)

• Fill color: fill(color), nofill().

• Line color and width: plain([color]), bold([color]).

• Text size: font size([size]), returns to normalsize if no argument is given.

A complete list of style commands is found in Section 3.8, starting on page 72.
To handle three-dimensional scenes, a camera performs point projection from a

selected spatial location to the canvas. As a user, you’ll need to control relatively
few of the camera’s parameters. Keep in mind, however, that elements are added to
a scene in the same order their commands appear in the output file, and that later
elements generally cover earlier ones. Some three-dimensional scenes require manual
ordering of the input file; such ordering is dependent on the camera’s location.

By default, ePiX draws thin, solid, black lines, performs no filling of regions, prints
text in a 12 pt Roman font, and looks down the z axis from a large distance, giving
orthogonal projection on the (x, y) plane. When the camera is moved, the z axis
points vertically up on the page.

2.3 Tutorial

This section presents sample input files side-by-side with their output so you can
compare what you write with what you’ll see on the screen or page. ePiX provides

14 CHAPTER 2. GETTING STARTED

standard drawing capabilities, but like all software has its own idioms and personality.
The basic syntax, which comes from C/C++, should be mostly self-explanatory. One-
line comments begin with the string “//”.

To use the sample files interactively, you’ll need working software: bash, emacs,
ePiX, g++, gv, and a running X server. To complete your “GUI”, start gv and select
“Watch file” from the “State” menu. The loaded file will update automatically when
it changes.

Create a “scratch” directory, cd into it, and run the command

tar -zxf /usr/local/share/doc/epix/sample_src.tar.gz

(Change the path as appropriate for your installation.) This unpacks copies of the
sample files into your scratch directory, including all the files mentioned in this man-
ual. The README file serves as a table of contents.

Open a sample file in emacs, compile it from the drop-down menu (or with the
keyboard command), then open the EPS file in gv. Now you’re ready to follow the
tutorial interactively. A few suggested exercises are included with each file. Naturally,
as you study more files, you’ll be able to make more interesting changes on your own.

Basic Drawing

The first sample, hello.xp, contains code needed to specify the figure’s size, followed
by the classic greeting. The border command draws a box around the figure in the
specified color and width, and serves here merely to delimit the output from the
surrounding page.

/* -*-ePiX-*- */

#include "epix.h" // These lines are analogous

using namespace ePiX; // to a usepackage command.

int main()

{

picture(P(-1,-1), P(1,1), "2 x 1in"); // corners, true size

begin(); // ---- Figure body starts here ----

border(Black(), "1pt"); // color, line width

font_size("Huge"); // May be any font size, e.g. "scriptsize"

label(P(0,0), "Hello, world!");

end(); // ---- End figure; write output file ----

}

2.3. TUTORIAL 15

Hello, world!

• Change the color and width of the border. (RGB(r,g,b); creates an RGB color,
CMY colors are analogous. Named primaries are available. The densities should
be between 0 and 1 for “expected” behavior.)

• Add backing(Cyan()); after the border command.

• Put the command crop ellipse(); before the border command. Permute the
crop ellipse command with the border and backing lines, and note how the
attribute (crop) affects objects (border, backing).

Geometric Objects

Our next file uses simple objects to draw a 2-D house-and-sun scene.

int main()

{

picture(P(0,0), P(5,2), "3.75 x 1.5in");

begin();

triangle(P(0.9, 1), P(3.1, 1), P(2, 1.5)); // vertices

circle(P(4,1.5), 0.25); // center and radius

rect(P(1,0), P(3,1)); // opposite corners

fill(Black(0.1)); // light gray

rect(P(2.3,0), P(2.7,0.8)); // the door

nofill();

bold(); // draw thicker lines

grid(P(1.4, 0.2), P(2, 0.6), 2, 2); // corners, number of squares

line(P(xmin(), 0), P(xmax(), 0)); // endpoints

end();

}

16 CHAPTER 2. GETTING STARTED

• Add declarations such as bold(RGB(1,0.9,0.5)) or fill(Yellow()) to color
the scene. (Color and filling are orthogonal attributes.)

The sample file house.flx uses loops to draw gradient fills of the lawn, sky, and sun,
and animates a sunset.

Function Plotting

Plotted functions must be defined in the “preamble”, before main. “High-level”
elements—coordinate axes and grids, axis labels, and graphs—are drawn with
mnemonically-named commands.

// double = double-precision floating point

double f(double x) { return 0.75*Sin(x) - 0.25*Sin(2*x); }

int main()

{

picture(P(-2,-1), P(2,1), "5 x 1in"); // [-2,2] x [-1,1]

begin();

revolutions(); // set angle units, [0,1] = one turn

h_axis(16); // axes w/default endpts

v_axis(4);

h_axis_labels(4, P(0,-4), b); // shift down 4pt, align below

plain(Red());

plot(f, xmin(), xmax(), 120); // use 120 intervals

end();

}

2.3. TUTORIAL 17

−2 −1 0 1 2

• Define and plot some different functions; adjust the bounding box as necessary.
(Use repeated multiplication for polynomials. The polarplot command graphs
r = f(θ).)

• Change the arguments to h axis labels. The first specifies the number of
intervals to label; the second gives the label offset in pt. The last puts each
label below (b) its Cartesian location.

Multivariable Plotting

Functions of two or three variables are defined just like functions of one variable, but
for plotting the return type must be a point (P), not a real number (double). The
domain class specifies the set of inputs to plot.

P f(double r, double th)

{

return P(r*Cos(th), r*Sin(th), pow(r, 3)*Cos(3*th));

}

int main()

{

picture(P(-1,-1), P(1, 1), "2 x 1in");

begin();

pst_format(); // use PSTricks macros for output

// corners ([0,1] x [0,2\pi]) and fineness

// (8x40 rectangles, plotted at 16x120 resolution)

domain R(P(0,0), P(1, 2*M_PI), mesh(8,40), mesh(16,120));

camera.at(P(3,1,2)); // set the viewpoint

arrow(P(0,0,0), P(1.25,0,0)); // coordinate axes

arrow(P(0,0,0), P(0,1.25,0));

plain(Blue(1.2)); // line color and width

fill(Yellow()); // shading color

surface(f, R);

18 CHAPTER 2. GETTING STARTED

end();

}

Loops and Control Structures

A function can be defined by an arbitrary algorithm, and a domain may be used to
plot a family of functions for several values of one variable.

P sin_n(double x, double n) // Taylor polynomial of sin x

{

const int N((int) floor(n)); // convert n to an index bound

const double sqx(-pow(x, 2)); // -x^2

double val(x), summand(x);

for (int i=1; i <= 2*N+1; i += 2)

{

summand *= (sqx/((i+1)*(i+2))); // (-1)^i x^{2i+1}/(2i+1)!

val += summand;

}

return P(x, val); // return (x, y)

}

int main()

{

picture(P(0, -1), P(6*M_PI, 1), "5 x 1in");

begin();

set_crop();

bold(Green());

plot(Sin, 0, xmax(), 120);

domain R(P(0,1), P(6*M_PI, 41), mesh(60, 40), mesh(120, 40));

for (int i=3; 0 <= i; --i) // print in descending degree

{

bold(RGB(0.25*i, 0, 1-0.25*i)); // degree-dependent color

plot(sin_n, R.slice2(5*i+1)); // plot for n = 5i+1

}

end();

}

2.3. TUTORIAL 19

Page Layout

Page layout can be composed from sub-pages with screen objects. In the loop body
below, objects are added to the “active” screen, then inset into the “canvas”, the
screen representing the entire figure.

P f(double u, double v)

{

return P((u-v)*(u+v), 2*u*v, u);

}

int main()

{

picture(P(0,0), P(2,3), "5x7.5in"); // overall size

begin();

domain R(P(-1,-1), P(1,1), mesh(12,12), mesh(24,24));

for (int i=0; i<2; ++i)

for (int j=0; j<3; ++j)

{

screen my(P(-3,-3), P(3,3));

activate(my);

border(Red(0.6), "1pt");

// frame-dependent viewpoint

camera.at(sph(10, (2*j+i+1)*M_PI/8, M_PI/6));

plot(f, R);

arrow(P(0,0,0), 2*E_1);

arrow(P(0,0,0), 2*E_2);

// SW corner at (i, 2-j), padded by 0.05 on all sides

inset(P(i+0.05,2.05-j), P(i+0.95,2.95-j));

}

end();

}

20 CHAPTER 2. GETTING STARTED

2.4. C++ BASICS 21

2.4 C++ Basics

An ePiX source file is a C++ program. If you’ve successfully modified and compiled the
sample files, you know enough C++ to use ePiX. In the author’s experience, C grammar
suffices for most applications. An excellent introduction to definitions of functions
and variables, control statements, and overall program structure is Kernighan and
Ritchie’s The C Programming Language, second edition [3].

2.4.1 File Format

Jay Belanger’s emacs mode for ePiX inserts a file template when an empty buffer
is opened with the extension xp. This section explains the purposes served by the
template. A few additional remarks may help you avoid basic syntax pitfalls.

A C++ file consists of “statements”, analogous to ordinary sentences. Common
types include declarations (which “register” a function, variable, or type name with
the compiler), definitions (which assign meaning to declared names), and function

calls (which cause a named function to execute). Most statements in an ePiX input
file are function calls (“commands”). Plain declarations are relatively rare in user
files, since a definition serves to declare any new names that it contains.

Every statement ends with a semicolon, and conventionally a file contains at most
one statement per line. The compiler ignores nearly all whitespace (spaces, tabs, and
newlines), which should be used freely to make files easy to read. Other punctuation
(periods, commas, (semi)colons, parentheses, braces, and quotes) dictates file parsing,
and must adhere stringently to grammar.

An ePiX file always begins with the lines

#include "epix.h" // N.B. pre-processor directive, no semicolon

using namespace ePiX;

The first line is analogous to a LATEX usepackage command: It loads the contents of
the “header” file epix.h, importing the names of commands provided by ePiX. To
avoid name conflicts, ePiX’s commands are enclosed in a “namespace”. For example,
the label command is actually known to the compiler as ePiX::label. The second
line above tells the compiler to apply the prefix tacitly.

2.4.2 Variables and Functions

Definitions of variables and functions play the same role in a figure that macro def-
initions play in a LATEX document: gathering and organizing information on which
the figure depends. A variable is defined by supplying its type, name, and initial
value. By far the most common data types in ePiX are double (double-precision
floating point number), P, and int. The name of a variable may only consist of
letters (including the underscore character) and digits, and must begin with a letter:

22 CHAPTER 2. GETTING STARTED

my_var, var2, MY_var, aLongVariableName; // valid

my-var, 2var, \v@riable, $x, ${MY_VARIABLE}; // not valid

Variable names are case-sensitive, and numerous (non-universal) conventions govern
the significance of capitalization. Generally, make names descriptive but not unwieldy,
and avoid language keywords (such as const, true, double, class, or public) and
names that begin with an underscore.

A function accepts “arguments” and “returns a value”. To define a function in C++,
specify the return type, the name of the function, the types of the arguments, and
the algorithm by which the value is computed from the inputs. The code block

double f(double x)

{

return sqrt(1-x*x);

}

defines the double-valued function f of one double variable defined by the formula
f(x) =

√
1− x2.

2.4.3 Comments

C++ has two types of comments. C-style comments, which may span several lines, are
delimited by the strings /* and */. One-line comments, analogous to the LATEX %,
are begun with //. A one-line comment may appear within a multi-line comment,
but a C-style comment may not; the compiler will mistake the first */ it encounters
as the end of the current multi-line comment.

2.4.4 Program Execution

All the “action” in a C++ program occurs inside the special function main. Running
a compiled C++ program is viewed by the operating system as calling the program’s
main function. The return value (an int) is the program’s exit status. The contents of
the output file start with begin() and terminate with end(). Intervening statements
constitute the body of the file.

In C++, a function may not be defined inside another function. Variables may be
defined inside main, but functions cannot be.

2.4.5 Strings and Raw Output

In C++, a string is a sequence of characters. Most strings in ePiX input files
are literals, double-quoted strings whose value is read from the input. In a string
literal, backslash is an escape character; a single backslash is produced by a double
backslash in the input file. Certain letters have special meanings when backslash-
escaped, including “\n” (newline) and “\t” (TAB). Unlike LATEX, C++ does not require

2.5. ANIMATION 23

#include "epix.h"

using namespace ePiX;

int main()

{

picture(P(-1,-1), P(1,1), "10cm x 3in);

begin();

pre_write("\\begin{figure}[hbt]"); // comes before the picture

post_write("\\caption{A \\LaTeX\\ figure.}"); // and after

post_write("\\end{figure}");

< ... other ePiX commands ... >

write("%% A comment near the end, but inside the picture.");

end();

} // End of main()

Figure 2.1: Generating a self-contained figure in ePiX.

a space to separate an escape sequence from following text; the string “\\textwidth”
literally represents a LATEX command, while “\textwidth” is read “TABextwidth” by
the compiler.

Though not commonly needed, raw text can be printed to the output file. The
functions write, pre write, and post write accept string arguments. write prints
its argument where the call appears in the input file. The other functions print their
arguments before or after the completed picture, respectively. These commands must
be in the file body. As an application, a complete LATEX figure environment (with
caption and label) can be produced by an ePiX file, Figure 2.1.

2.4.6 Conditionals and Loops

An algorithm’s behavior usually depends on internal state. A conditional statement

causes blocks of code to be executed according to criteria. A loop repeatedly executes
a code block, usually changing the values of variables in a predictable way, so that
the loop exits after finitely many traversals.

Figure 2.2 illustrates conditionals and loops with Euclid’s algorithm for the great-
est common divisor. Three pieces of notation require explanation: j%i means “j
(mod i)”, || is logical “or”, and == is “test for equality”. (A single “=” is the assign-
ment operator.)

2.5 Animation

ePiX is well-suited to the creation of mathematically accurate animations: If a figure
depends suitably upon a “time” parameter, then a loop can be used to draw the entire

24 CHAPTER 2. GETTING STARTED

int gcd (int i, int j)

{

int temp(i); // initialization syntax

if (i==0 || j==0)

return i+j; // define gcd(k,0) = k

else {

if (j < i) // swap them

{

temp = j;

j = i;

i = temp;

}

// the work is done here...

while (0 != (temp = j%i)) // assign temp, test for zero

{

j = i;

i = temp;

}

return i;

}

}

Figure 2.2: Euclid’s division algorithm in C++.

figure for multiple time values, yielding successive “snapshots” of the figure as time
progresses. The shell script flix automates the process of compiling a suitable input
file into a collection of pngs and assembling these frames into a mng or gif animation.
GraphicsMagick is the image-handling engine.

A flix file is an epix file with two restrictions:

• The double variable tix() is used as “clock”.

• main accepts two command line arguments and sets tix() accordingly.

Jay Belanger’s emacs mode recognizes the file extension .flx and inserts template
code if an empty buffer is opened. Creation of flix files is as easy as creation of epix
files. The samples directory contains a handful of flix files that may be consulted
for ideas.

By default, flix creates movies with 24 frames, in which tix() runs from 0 to 1,
and animates at 0.08 sec/frame. These and other parameters can be changed with
command-line options.

A “typical” .flx file may take 30 seconds to a few minutes to compile, depending
on the number of frames and the complexity of each frame. To facilitate debugging,
elaps can be run on a flix file. elaps runs in a fraction of the time, and if elaps
can’t produce a viewable image, flix will surely fail.

2.6. LAYOUT TRICKS 25

2.6 Layout Tricks

2.6.1 Stereograms

Stereograms are created by drawing a single scene twice from slightly different points
of view. To create a stereogram with ePiX, write a “scene” function containing the
necessary drawing commands, then set the camera appropriately and call the scene
function twice, once for each frame.

Crossed-Eyes Stereograms

The sample files lorenz.xp and twisted cubic.xp use page layout to draw crossed-
eyes stereograms. For each frame, create and activate a screen, set the camera, and
call the scene function. The frames are inset side by side in the final picture. For
a crossed-eyes stereogram, the frame from the “rightmost” camera position is placed
on the left.

Bi-Color Stereograms

The sample files cube.flx and mirrorball.flx contain animated red-cyan stere-
ograms, suitable for viewing with 3-D glasses. The technique works best with black-
and-white line drawings, but the basic approach is the same as for crossed-eyes stere-
ograms: Create a scene function and call it twice, setting the camera appropriately.
Layout is unnecessary since the frames are superposed. Pen colors should be close to
red and cyan, but “optimal” choices depend on one’s eyes and 3-D glasses.

Stereographic Movies

Either form of stereogram can be animated in a .flx file, but keeping one’s eyes
properly crossed requires practice while most people can instantly see depth with 3-D
glasses. As always when using flix, debug the scene with elaps before compiling a
movie. If a stereoscopic effect is difficult to see in a still image, it will be even harder
to perceive in a movie.

2.6.2 Inset Images

ePiX can place external images into a figure, similarly to Rolf Niepraschk’s overpic
package. You provide the Cartesian center point, the file name, and optionally the
true height and/or width of the image:

label(P(a,b), "\\includegraphics[width=w,height=h]{file}");

This effect requires the graphicx package. When compiling a stand-alone graphic
containing an external image, you must specify the graphicx package on the com-
mand line: elaps -p graphicx <file>

26 CHAPTER 2. GETTING STARTED

xp, flx eepic

dvi ps

tex
pdf

eps png

mng

gif

laps

xp, flx eepic

dvi ps

tex
pdf

eps png

mng

gif

epix

xp, flx eepic

dvi ps

tex
pdf

eps png

mng

gif

elaps

xp, flx eepic

dvi ps

tex
pdf

eps png

mng

gif

flix

Figure 2.3: Visual guide to ePiX’s shell scripts

Chapter 3

Reference Manual

This chapter details ePiX’s capabilities, discussing attributes and data types, and
listing available commands in the form

label(P posn, [P offset], string text, [align]);

circle(P ctr, double rad=1, normal=P(0,0,1));

As in Chapter 2, function arguments are given by type (P, double, string, etc.)
and name, or by name alone if the type is clear. Optional arguments are enclosed in
square brackets. A few argument types, such as [align] above, admit only a small
number of values; these cases are explained when the corresponding command is first
introduced.

A name followed by an equals sign and a value indicates a default argument;
if omitted in an input file, the compiler substitutes the default value. Only trailing
arguments may be specified this way. For example, if the rad argument of the circle
command is omitted, the normal argument must be omitted as well.

In an input file, only an argument’s value is given, not the type:

label(P(0,0), P(0,-4), "Hello world", b);

circle(P(0,-0.25), sqrt(2)); // use default normal

Generally, len signifies either a number (representing a length in pt) or a double-
quoted string containing a number and a two-letter LATEX length unit, such as "1.5pt"
or "6cm". color represents a Color object constructed from a named primary
(Blue(), Magenta(0.7), etc.), a color specification (RGB(r,g,b), CMY(c,m,y), etc.),
or an operator applied to an existing Color.

3.1 File Structure

An ePiX input file constitutes a short C++ program. When this program is compiled
and run by one of the shell scripts, it creates a figure file suitable for inclusion in
LATEX.

27

28 CHAPTER 3. REFERENCE MANUAL

Like a LATEX document, an ePiX file contains a preamble, which sets up a drawing
environment, and a body, which contains actual figure-generating commands. The
minimal file has the form

#include "epix.h" // N.B. no semicolon

using namespace ePiX;

int main() {

picture(P(a1,b1), P(a2,b2), "n1 [unit1] x n2 unit2");

begin(); // end of preamble, start of body

end(); // end of body

}

ePiX commands are of four general types: drawing, attribute setting, definitions (of
data and functions), and operations on existing objects. Except as noted below, draw-
ing and attribute commands must appear in the body, between begin() and end().
Function definitions must come in the preamble, before main(). Data definitions may
appear in the preamble or body.

Output Format

The end() command writes the output file to stdout, using eepic macros by default.
The shell scripts redirect stdout to an appropriate disk file.

The attribute-setting command pst format() causes the output file to be written
using PSTricks macros when end is called. Similarly, tikz format() causes the file
to be written using tikz macros, and eepic format() causes the file to be written
using eepic macros. These commands may appear anywhere in the figure body.
There is no reason for a file to contain more than one such command.

The output format may be selected on the command line, overriding any explicit
request in the input file. Supplying epix, elaps, or flix with one of the options
--pst, --tikz, or --eepic is tantamount to issuing a pst format() (etc.) command
just before the end of the file. These options are listed in decreasing precedence. If
more than one is given, the “strongest” applies, regardless of the command line order.

A figure may be written directly to a specified disk file, in a format unaffected by
the command line flags above. The command

print_eepic("file.tex");

writes the figure to the named file using eepic macros. Analogous commands ex-
ist for the formats pst and tikz. These commands perform an immediate action.
Consequently, the command’s location in the input file is significant, and multiple
commands may appear in a single file, so long as distinct file name arguments are
provided. Applications include writing the same figure in multiple formats, or creating
successive “snapshots” of a lengthy computation.

3.2. PICTURE SIZE AND ASPECT RATIO 29

3.2 Picture Size and Aspect Ratio

The picture command specifies a figure’s logical and true sizes. In the “minimal file”
snippet above, the canvas is the Cartesian rectangle [a1, a2] × [b1, b2] whose corners
are given. Either pair of opposite corners is acceptable, but confusion is less likely
when the SW and NE corners are given, in this order.

The true (printed) width and height are read from picture’s third argument, a
“size string” such as "4cm x 1in", containing a number and optional LATEX length
unit, an x, another number, and a mandatory length unit. Spaces may be used for
legibility. The mandatory length unit becomes the LATEX unitlength. The argument
"4cm x 1in" creates a picture 4 cm wide and 1 in high, but internally converts 4 cm
to inches. Recognized length units are pt (points, the default), cm (centimeters), in
(inches), mm (millimeters), pc (picas), and bp (big points). (1in = 2.54cm = 72bp =

72.27pt, 1pc = 12pt.)
The logical and true sizes may be defined separately with the commands

bounding_box(P(a1,b1), P(a2,b2));

picture(n1, n2);

unitlength(len); // len a length string, not a double

One way or another, the logical and true dimensions must have positive values when
the begin() command is issued.

LATEX treats the contents of a picture environment as a single box, aligned by
default on its lower left corner. An offset command accepts two double arguments or
a size string and shifts the page location accordingly. The command offset("0.25

x -0.5cm") shifts the picture right 0.25 cm and down 0.5 cm. If the unitlength is
1 cm, the command offset(0.25, -0.5) has the same effect.

A non-zero offset causes a picture’s contents to appear in a location where LATEX
does not expect them. This can be useful in a LATEX document, but should be avoided
when compiling a stand-alone image, since dvips may crop according to rules of its
own.

The canvas’s corners are (xmin(),ymin()) and (xmax(),ymax()), while its width
and height are xsize() and ysize(). The canvas is a virtual, advisory data structure;
its dimensions are not directly related to the figure’s printed size, and picture elements
may lie outside the canvas. Affine scaling maps the canvas to the page when the
output file is written.

(xmin, ymin)

(xmax, ymax)

Canvas (virtual)

(0, 0)

(hsize, vsize)

Page (actual)

The figure’s aspect ratio is controlled by sizing the canvas. The aspect ratio is “true”
if the canvas and page rectangles are geometrically similar, e.g., if both boxes are
1.5 times as wide as they are tall.

30 CHAPTER 3. REFERENCE MANUAL

3.3 Color

ePiX provides a Color data type. Four models are implemented: RGB, CMY, CMYK, and
Gray. A Color holds primary color “channels”, each carrying an intensity between
0 (no color) and 1 (full saturation). “No color” means black in RGB and Gray, white
in CMY(K). RGB, CMY, and CMYK colors are written to the output file as commands in
the corresponding model. Gray shades are written in RGB.

Operations on red-green-blue colors are described below. Functionally, colors
are converted to RGB, operated upon, then converted back to the original model.
Conversions are as described in Uwe Kern’s xcolor manual [2].

3.3.1 Constructors

Each color model has a “constructor” creating a color of specified densities. The
RGB and CMY models have named “primary” constructors; the density argument is
optional and defaults to 1.

// red-green-blue colors

RGB(double r=0, double g=0, double b=0);

Red(d=1); Green(d=1); Blue(d=1);

White(d=1); Black(d=1);

// cyan-magenta-yellow colors

CMY(double c=0, double m=0, double y=0);

Cyan(d=1); Magenta(d=1); Yellow(d=1);

CMY_White(d=1); CMY_Black(d=1);

// gray

Gray(double d=0); // equivalent to RGB(d, d, d)

Each CMY constructor has a corresponding CMYK function, e.g. CyanK() or CMYK White().
Though color densities lie between 0 and 1, ePiX’s primary color constructors

take arguments mod 4, viewed as elements of [−2, 2]. Consider Red(d), “red with
density d”. For integer values of d, the constructor has the following meanings:
Red(0) is black, Red(1) is red, Red(2)=Red(-2) is white, and Red(-1) is anti-red,
or cyan. For non-integer d, the constructor interpolates between the bracketing integer
values, Figure 3.1. Other primary constructors work analogously.

Let δ : [−2, 2] → [0, 1] be the piecewise-linear function that converts real numbers
to primary color densities, clip : R → [0, 1] the clipping function. The non-primary
constructor RGB(r, g, b) computes the density of the red channel as clip

(

δ(r) +
δ(−g) + δ(−b)

)

; the green and blue channel densities are computed similarly. Every
color can be created with arguments between 0 and 1, but the constructor accepts
arbitrary real arguments and returns colors varying “continuously and periodically”.

3.4. SCENE ATTRIBUTES 31

−2 −1 0 1 2

Figure 3.1: The red primary constructor.

Colors possess an “alpha-channel” for transparency. Except as supported by the
output format, this feature is a stub.

3.3.2 Color Operations

Colors can be scaled, inverted, blended, superposed, and filtered. In the code below,
tint is a Color. The effect of each operation is described in the rgb model; the visual
result is the same in all models.

tint *= double c; // multiply channels by c, rebuild

tint.invert(); // (r, g, b) -> (1-r, 1-g, 1-b)

tint.blend(Color col, double t); // (1-t)*tint + t*col

tint.superpose(col); // add channels, then clip to [0,1]

tint.alpha(double d); // set alpha channel to clip(d)

tint.filter(col); // return min density in each channel

Except for filter, these operators modify their object. filter simulates the effect
of viewing col through a transparent sheet of tint, and returns a new Color object
having the same model as tint without modifying tint itself.

3.4 Scene Attributes

Objects in a scene sit in 3-dimensional space. A camera maps objects to the active

screen. The active screen may, in turn crop its contents. Each drawing command
creates an object, “photographs” it, and adds the image to the active screen. This
section describes the Camera and screen classes and a few associated concepts.

3.4.1 Angular Mode

By default, angles are measured in radians. Two other angular modes are avail-
able: degrees and revolutions. The angular mode is set with a named command,

32 CHAPTER 3. REFERENCE MANUAL

radians(), degrees(), or revolutions(). The current angular mode affects all
trigonometric functions and operations.

3.4.2 The Camera

Three-dimensional scenes are drawn on flat paper by applying a mathematical trans-
formation. By default, ePiX uses point projection, the technique used by art students
when they trace on a window with grease pencil, Figure 3.2.

Sea

Sky

Eye

Viewpoint

Canvas

Object

Shadow

Target

Figure 3.2: Point projection.

ePiX depicts a Cartesian world by projecting mathematically to a screen plane,
then affinely scaling to a printed page. The camera, which maps the world to the
screen, consists of a body (data that determines the position and orientation of the
camera), a lens (the actual mapping to the screen plane), and a filter (a color through
which the scene is viewed).

Body

The camera’s spatial orientation is described by a triple of mutually perpendicular
unit vectors. In memory of happy days at the beach, these vectors are called sea,
sky, and eye. The screen plane is parallel to the sea-sky plane; the sea vector points
horizontally to the right, sky points vertically upward. The eye is their cross product,
which points directly at the viewer.

The sea-sky-eye basis is located at the viewpoint, the camera’s spatial location.
The target, the origin of the screen plane, lies on the line through the viewpoint in
the direction opposite the eye vector. The distance from the viewpoint to the target
is the range. The camera sphere is centered at the viewpoint and passes through the
target. The orientation, viewpoint, target, and range completely (and redundantly)
determine the camera’s geometric situation in the world.

3.4. SCENE ATTRIBUTES 33

The Lens

A lens maps the world to the screen. ePiX comes with four lenses: shadow (the
default), orthogonal, fisheye, and bubble. Each lens simulates the appearance of world
objects as seen by an observer at the viewpoint. The shadow lens is point projection
from the viewpoint to the screen plane. The orthogonal lens projects from infinite
distance. Each of the other lenses performs radial projection to the camera sphere,
then maps the sphere to the screen plane; the fisheye lens does orthogonal projection
(so the entire image lies inside the disk centered at the target whose radius is the
range) while the bubble lens does stereographic projection from the target’s antipode.

An input file normally uses a single camera, so a global object named camera is
defined automatically. At the start of a figure, the camera looks down on the (x1, x2)-
plane from a distant point on the x3-axis. The resulting view, essentially projection
along the axis, is suitable for 2-dimensional figures.

The camera is manipulated similarly to a real camera:

camera.at(P posn); // set viewpoint to posn

camera.look_at(P targ); // set target to targ

camera.range(double dist); // fix target, move viewpoint

camera.focus(double dist); // fix viewpoint, move target

camera.tilt(double angle); // rotate about the sea axis

camera.pan(double angle); // rotate about the sky axis

camera.roll(double angle); // rotate about the eye axis

camera.clip_range(dist); // cull scenery closer than dist

Explicitly setting the viewpoint or target makes the sky vector parallel to the projec-
tion of the x3 axis when possible; otherwise the x2-axis is used. Setting the range or
focus moves the camera parallel along the eye line. Each command re-sizes the image;
note that increasing the focus enlarges the image. The three rotation operations fix
the viewpoint, but only roll fixes the target.

Filtering and Color Separation

The camera has a filter through which all scene Colors pass. For uniformity, the
filter should only be set at the start of the file body, before any visible elements have
been placed in the scene. The filter has two primary uses—model conversion and
color separation—but can also be used for special effects.

There is a Neutral color, for which filtering has no effect at all. The camera’s
default filter is Neutral. In addition, each color model has a neutral representative,
RGB Neutral, etc. Passing Colors through a neutral filter preserves their appearance
but converts them to the neutral Color’s model.

Filtering can be used to “split” a Color into primary constituents. For RGB chan-
nels, the primaries themselves are suitable filters. For CMYK channels, there are special

34 CHAPTER 3. REFERENCE MANUAL

process filters, named C_Process, etc.

camera.filter(CMY_Neutral()); // convert all colors to CMY

camera.filter(Gray_Neutral()); // black and white photography

camera.filter(Green()); // the green channel

camera.filter(M_Process()); // the magenta channel

camera.filter(Red(1.4)); // la vie en rose?

3.4.3 Clipping

Two operations handle elements lying far from the target. Cropping culls elements
based on their screen location, and is described later. Clipping removes objects whose
spatial location lies outside the “clip region”.

Initially, the clip region is a very large box centered at the origin. Commands are
provided to resize this box, keeping the faces parallel to coordinate planes.

clip_box(P pt1, P pt2); // opposite corners

clip_box(P pt); // opposite corners pt and -pt

clip_to (P pt); // pt and P(0,0,0)

clip_box(); // very large box

Additional “clippers” may be added manually. Individual clipping planes are specified
by a point and inward-pointing normal vector. Parallel planes cutting a “slice” or
“slab” are described by a location, direction, and a distance. The location lies halfway
between the clipping planes, and the planes’ normals point toward the location.

clip_face(P loc, P perp); // perp points inward

clip_slice(loc, perp); // very close parallel planes

clip_slice(loc, perp, dist); // planes separated by dist

clip_restore(); // remove manually-added clip planes

Like clip restore, the clip box and clip to commands remove all user-specified
half spaces.

3.4.4 Screens and Page Layout

By default, drawing occurs in the Cartesian coordinate system of the canvas. How-
ever, insets and subfigures are most naturally composed in “local” coordinates, then
placed into their final location as a unit, a process called layout. ePiX implements
layout with the screen class.

3.4. SCENE ATTRIBUTES 35

Screens

A screen is a Cartesian plane containing a distinguished coordinate rectangle, its
bounding box. The canvas of a figure is a screen, as is the internal representation
of the printed page. At any point of a file body, some screen is active, or “open for
drawing”. A new screen is created from a pair of opposite corners, but is not used
until explicitly activated.

screen subfig(P(a1,b1), P(a2,b2)); // [a1, a2] x [b1, b2]

activate(subfig); // open subfig for drawing

// commands to draw in subfig

deactivate(subfig); // re-activate the previous screen

The canvas is automatically drawn at the end of the input file. The contents of
other screens must be incorporated into the canvas explicitly with an import or
inset command. import affinely scales the bounding box of the “child” screen to
the canvas. inset specifies corners in the “parent” where the child is placed.

import(); // active screen to canvas

import(subfig); // subfig to canvas

inset(P sw, P ne); // active screen to specified rectangle

inset(subfig, sw, ne); // subfig to specified rectangle

inset(subfig); // inset to subfig’s corners

Extracting

The portion of a screen enclosed by a specified rectangle can be extracted. Each of
the commands

subfig.extract(P sw, P ne);

canvas().extract(P sw, P ne);

returns the screen having stated corners and containing part of subfig or the
canvas, respectively. Elliptical and diamond-shaped portions of a screen may be
extracted. The contents occupy the ellipse or diamond inscribed in the given rectan-
gle.

subfig.extract_ellipse(sw, ne);

canvas().extract_diamond(sw, ne);

The screen returned by extract (or its variants) may be used just like a manually-
constructed screen, for example to construct a magnified inset.

36 CHAPTER 3. REFERENCE MANUAL

True-Size Drawing

On occasion, it is necessary to draw at known page size, independently of the unit
length. For 2-dimensional drawing in the (x1, x2)-plane with the camera in its default
location, the coordinates (horizontal, vertical, or both) of a screenmay be interpreted
as true pt offsets relative to a specified point rather than as Cartesian coordinates.

inlay(subfig, P loc);

inlay_horizontal(subfig, loc);

inlay_vertical(subfig, loc);

Each command maps the origin of subfig to the specified location in the active
screen. The first performs affine scaling so that one Cartesian unit in subfig maps
to one true pt on the page. The second and third commands perform this scaling
only in the named direction.

The inlay functions are suitable only for 2-dimensional effects. For 3-dimensional
true-size drawing, the function pt to screen converts a true length of 1 pt into Carte-
sian coordinates in the active screen. For example, the command line(P(0,0),

P(pt to screen(12),0)) draws a line segment 12 pt long with its left endpoint at
the Cartesian origin. True size drawing is unusual in an input file, but has definite
uses in library code; ePiX’s right angle marker is a typical application.

Either type of true-size drawing works as described when drawing in the canvas,
and only when drawing in a screen imported to the canvas at “true Cartesian” size
(one screen unit maps to one Cartesian unit in the canvas). In other situations, the
true size coordinate(s) will be scaled by additional affine transformation(s).

Cropping and Decorations

A screen has a crop mask : rectangular (default), elliptical, or diamond-shaped. If
cropping is switched on in the active screen, added elements are cropped to the crop
mask. For example, cropping by the default crop mask in the canvas ensures the
figure lies inside the printed region allocated by LATEX.

The crop commands below affect the active screen only. Cropping is not a
“global” attribute, but must be set or unset explicitly for each screen. By default,
cropping is switched off.

set_crop(); // activate cropping

set_crop(false); // deactivate cropping

crop_diamond(); // <>-shaped mask, set crop state

crop_ellipse(); // etc...

crop(); // crop active screen’s contents

Normally the crop mask is inscribed in the screen’s bounding box. The commands
crop diamond and crop ellipse also accept a pair of P arguments, which are treated
as corners of the crop box.

3.4. SCENE ATTRIBUTES 37

The active screen may be decorated with a border (outline of specified color and
line width) and backing (solid fill color). The crop mask determines the shape of the
border and backing.

border(color, len);

backing(color);

Identically-named member functions can be applied to an arbitrary screen whether
or not it is active:

scr.crop_rectangle().backing(Blue(1.8));

canvas().crop();

Affine Maps

A plane affine map has the form T (x) = Ax+b for some invertible 2×2 matrix A and
a constant vector b. ePiX’s affine class allows affine maps to be built and applied
to screens’ contents.

An affine map is uniquely determined by the images of three non-collinear points.
The constructor returns the affine map sending the points (1, 0), (0, 1), and (0, 0) to
pt1, pt2, and pt0, respectively.

affine af(P pt1, P pt2, P pt0=P(0,0));

To emphasize, the arguments are locations, not displacements, and the image of the
origin comes last. There is also a void constructor (taking no arguments) which
returns the identity map.

To facilitate construction of affine maps, an existing affine may be post-
composed with a variety of “elementary” affine transformations. In the commands
below, th is an angle (in current units), sc is a non-zero double, and ctr is a point
fixed by the composing transformation. In each command, ctr defaults to (0, 0).

affine af; // the identity map

af.shift(P arg); // translate by arg

af.rotate(th, [ctr]); // counterclockwise rotation about ctr

af.reflect(th, [ctr]); // reflect across line through ctr

af.h_scale(sc, [ctr]); // horizontal scaling

af.v_scale(sc, [ctr]); // vertical scaling

af.scale(sc, [ctr]); // dilatation

af.h_shear(sc, [ctr]); // shear preserving horizontals

af.v_shear(sc, [ctr]); // shear preserving verticals

af.invert(); // the inverse

38 CHAPTER 3. REFERENCE MANUAL

af.postcomp(affine f); // post-compose with f

af(f); // pre-compose, af not modified

A non-invertible affine can be created only by shearing or scaling with an extremely
large or extremely small argument, or by supplying three collinear points to the
constructor. Calling invert on a non-invertible map merely issues a warning and
performs no action.

An affine may be applied to a screen’s current contents. The screen class has
eight member functions (shift through shear) with syntax identical to the affine
map functions. In addition, an arbitrary affine may be applied to a screen:

scr.shift(arg); // shift scr’s contents by arg; etc.

scr.apply(f); // apply f to scr’s contents

To apply a composition of several maps to a screen, it’s best to build an affine

map by composition, then apply the map. Composing affines is cheap; applying
an affine is costly in proportion to the number of elements in the screen.

Applying an affine to a screen has no effect on the bounding box, border,
or backing, and may move elements outside the bounding box even if cropping is
active. To ensure a screen’s contents lie inside the bounding box, crop the screen

after applying the affine(s).
The sample file inverse.xp uses affine maps to depict branches of inverse func-

tions in one variable, symmetry.xp depicts the permutation group S3 by its action on
a regular hexagon.

3.5 Drawing Attributes

ePiX maintains drawing states for filled regions, paths, and text objects.

3.5.1 Filled Regions

Filling is either on or off. When filling is active, closed paths are filled with the
current fill color.

fill(); // turn filling on

fill(color); // turn filling on, specify color

nofill(); // turn filling off, same as fill(false);

3.5.2 Paths

Paths and borders of filled regions are drawn with two pens, each described by color
and line width. The line pen draws all path-like objects. The base pen does nothing
unless it is wider then the line pen, in which case it draws an “underlayer” or “border”
on the line pen.

3.5. DRAWING ATTRIBUTES 39

pen(len); // set line pen width

pen(color); // set line color, keep width

pen(color, len); // set color and width

As usual, len may be either a length string or a double, interpreted as a width in pt.
There are base functions with the same signatures and analogous meanings for the
base pen.

The line width can be set with named declarations; the optional argument sets
the line color:

plain([color]); // 0.4pt

bold([color]); // 0.8pt

bbold([color]); // 1.6pt

Path Style

By default, path-like objects are drawn with solid lines. Dashed, dotted, and free-
form path style patterns are also available. (The base underlayer is always solid.)
The page length of a pattern defaults to 12 pt, but can be set.

line_style(string);

dash_size(len=12);

The path style is set with a WYSIWYG string of dashes, spaces, and periods, repre-
senting a pattern of dashes, gaps, and dots. In the sample styles below, the repeating
units have the same page size, 12 pt.

line style("- -")

line style("- -")

line style(" . ")

line style("- . -")

line style(". - .")

For brevity and uniformity, named commands are provided.

solid(); "-" dashed(); "- -" dotted(); " . "

A sequence of n dashes, spaces, and dots corresponds to a dash/dot pattern in an
interval divided into n subintervals of equal length. If the ith character is a dash or
space, the ith subinterval is drawn solid or empty, respectively. If the ith character
is a period, a dot is placed at the midpoint of the ith subinterval.

This pattern is applied to a path-like object as follows. The page length of each
edge is divided by the current dash size and the ceiling (next largest integer) taken.
This many copies of the current path style are scaled onto the edge. The first and
last characters are adjacent in repeated units.

40 CHAPTER 3. REFERENCE MANUAL

There are three inequivalent ways to adjust the dash length/dot spacing in a non-
line path: Change the dash length, create a path with a different number of points,
or use a longer, repetitive pattern. For best results, the style string should not be
longer than about a dozen characters.

If you need several dashed/dotted line styles in multiple figures, it’s best to define
a custom header instead of hard-coding line styles. See Section 4.2 for guidance.

3.5.3 Text Objects

Two types of textual element may appear in a file: labels (text boxes) and markers

(LATEX symbols). A marker occupies a box of zero size, and is placed at a specified
Cartesian location. A label has typographical size, and is usually offset from its
Cartesian location. For placement, an alignment point is attached to each label, and
Cartesian coordinates position the alignment point.

Labels

A label is printed as a LATEX box. By default, the alignment point is its reference
point, the intersection of the left edge and the baseline, which is used by LATEX to

position the box on the page: y = f(x)
The alignment point may be offset manually by a specified number of pt. Addi-

tionally, a label’s location with respect to the alignment point can be chosen with an
optional LATEX-style alignment option. This scheme allows labels to be placed easily
where they will not overlap other parts of the figure, and ensures labels stay properly
positioned when the size or aspect ratio of a figure changes.

label(P posn, P offset, string msg, [align]);

label(posn, msg);

The first two components of the offset argument are numbers of pt to shift the
alignment point right and up. The optional align argument may be one—or an ap-
propriate pair—of t, b, r, or l (top, bottom, right, left), or c (center). These align-
ment options specify the position of the label relative to the Cartesian location posn,
namely they work opposite to the way they work in LATEX.

[l][r] [t]
[b]

[tr][tl]
[br][bl]

The msg argument is usually a snippet of LATEX code enclosed in double quotes.
C++ treats “\” as an escape character, so a double backslash is needed in the source
to get a single backslash in the output. For example,

label(P(0,0), P(2,-1), "$\\rho = \\sin\\theta$", br);

3.5. DRAWING ATTRIBUTES 41

positions an alignment point 2pt right and 1pt below the (Cartesian) origin, and
typesets the equation ρ = sin θ below and to the right.

Labels can be rotated; the (counterclockwise) angle is set in current angle units
with the command label angle(theta). For example, a rotation angle of 90 degrees
prints labels along a vertical axis. Though label rotation has legitimate uses, it
can make labels more difficult to read, defeating their purpose. Do not use rotated
labels merely because they are available. As a practical matter, if an output file
contains rotated labels, the enclosing document must use the rotating package.
elaps automatically loads this package.

An affine behaves moderately intelligently when acting on a marker or label.
The mapping is applied to the label’s location, and the “linear part” is used to
adjust the offset and label angle. No attempt is made to treat alignment. For best
results, if a screen will have an affine applied to it, label positions should be fine-
tuned only with offsets, not alignment arguments. In all situations, the font itself is
unchanged; no attempt is made to print sheared, scaled, or reflected text. The sample
file inverse.xp illustrates the effect of affine maps on labels.

Fonts and Type Size

By default, the font in an ePiX figure is that of the enclosing document. The font
size and face are changed with “declaration-style” commands such as

font_size("Large");

font_face("sc");

The argument of font_size is a valid LATEX size. If no argument is given, normalsize
is understood. font_face accepts a two-letter string, appended to the string “text”
to give a LATEX font declaration command (“textsc” above). Finer-grained control
is accomplished by placing LATEX commands into the label text.

Label Attributes and Masked Labels

Each label command has a corresponding “mask” version (masklabel) that draws
an opaque rectangle under the label text. The mask size exceeds the label’s size by
an amount of padding, and the mask is itself surrounded by a rectangular border, of
specified color and width.

label_color(color); // set label text color

label_mask(color=White()); // set mask color

label_pad(string len);

label_border(color, [len]); // set color (and line width)

label_border(len); // set line width only

no_label_border(); // turn off label borders

42 CHAPTER 3. REFERENCE MANUAL

CIRC SPOT RING DOT DDOT

PLUS
+

OPLUS
⊕

TIMES
×

OTIMES
⊗

DIAMOND
⋄

UP
△

DOWN
▽

BOX BBOX

Table 3.1: ePiX’s marker types.

Markers

ePiX markers are obtained with marker(P pt, <MARKER TYPE>); (Table 3.1.) Sev-

eral “dot-like” marker types are available by name:

spot(P pt); dot(P pt); ddot(P pt);

--- box(P pt); bbox(P pt);

ring(P pt); circ(P pt); ---

A circ is filled with the current mask color, and a ring is “hollow”. Each dot-like
marker can also be called with label syntax, generating a labeled marker with one
command.

dot(P posn, offset=P(0,0), msg="", align=none); // etc.

By default, spot and ring are 4 pt in diameter; dot, box, and circ are 3 pt in
diameter; ddot and bbox are 2 pt in diameter. At arbitrary diameter, a spot is 4/3 the
diameter of a dot and a ddot is 2/3 the diameter. The command dot size(diam=3)

sets the diameter of a dot, and hence the size of all dot-like markers.

Reminders

When constructing and placing a label,

• Offsets are specified in pt (true length), not Cartesian units: A label’s location
relative to its alignment point should not depend on the logical or printed size
of the figure.

• The label text is enclosed in double quotes (the single character "), and contains
the LATEX code to generate the label. Backslashes are doubled.

3.5.4 Color Declarations

Old-style color declarations set the fill color, line color, and text color.

rgb(r, g, b); cmyk(c, m, y, k);

rgb(P); cmyk(P); // for function-controlled colors

red(d); // similarly for other primaries

3.6. CREATING AND DRAWING OBJECTS 43

3.6 Creating and Drawing Objects

Scene elements include geometric objects, coordinate grids, axis labels, and function
plots. A few commands create an object (a point, line segment, circle, sphere, or
plane) that can be used in subsequent computations, but most drawing commands
automatically create, draw, and discard objects.

3.6.1 Geometric Data Structures

Points

The simplest object in the world, and by far the most common named data struc-
ture, is P, an ordered triple of real numbers (double-precision floats). The func-
tion P(x1,x2,x3) creates the point (x1, x2, x3). If only two arguments are provided,
x3 = 0 by default. This convention allows ePiX to treat 2- and 3-dimensional figures
uniformly. The standard basis is available: E 1=P(1,0,0), etc.

Depending on context, a Pmay represent either a location (point) or a displacement

(vector). Almost all ePiX functions treat a P as a point. However, algebraic operators
and commands that plot vector fields treat P arguments as displacements.

Polar, cylindrical, and spherical coordinate P constructors are sensitive to the
current angular mode.

P pt=polar(r,t); // (r*Cos(t), r*Sin(t), 0)

P pt=cis(t); // (Cos(t), Sin(t), 0) = polar(1, t)

P pt=cyl(r,t,z); // (r*Cos(t), r*Sin(t), z)

P pt=sph(r,t,phi); // polar(r,t)*Cos(phi) + (0,0,r*Sin(phi))

Algebraic operations—addition/subtraction, scalar multiplication; scalar, cross,
and componentwise products; orthogonalization—can be performed on Ps. In com-
pound expressions, the binary operators below should be enclosed in parentheses, and
scalars must be collected at left, Ps at right.

double u=pt.x1(); // first coordinate of pt, etc.

P(a,b,c)|P(x,y,z); // scalar product, ax+by+cz

P(a,b,c)&P(x,y,z); // componentwise product (ax, by, cz)

P(a,b,c)*P(x,y,z); // cross product (bz-cy, cx-az, ay-bx)

J(p); // quarter turn about the x3-axis

p%q; // orthogonalization, p (mod q)

Explicitly, p%q is the unique vector p+k*q perpendicular to q.
P operations express mathematical relationships, and therefore imbue a figure with

logical structure, making the input file easier to read, modify, and maintain. Com-
monly, a file preamble will define a few named points with hard-coded coordinates,
then define additional points of interest using P operators.

44 CHAPTER 3. REFERENCE MANUAL

Complex Numbers

The Complex class represents a complex number, specified by its real and imaginary
parts. Arithmetic operators (addition, subtraction, multiplication, division) are pro-
vided, as well as exponential, logarithmic, circular, and hyperbolic functions (sensitive
to angle units), the latter with C appended to their names. A complex number implic-
itly converts to a point with third coordinate zero. The sample file cubic cutaway.xp

illustrates usage, including how to define and plot functions and color-shade Riemann
surfaces.

Complex u, z(4,3); // u = 0, z = 4 + 3i

double len(norm(z));// len = 5

double th(Arg(z)); // th = atan2(3, 4);

P pt(z); // pt = (4, 3, 0)

Complex w(expC(z)); // w = e^{4 + 3i}

u = LogC(z,k=0); // u = Log(z) + 2*pi*ki

u = sqrtC(z,k=0); // sqrt(z)*expC(pi*ki)

u = rootC(z,n,k=0); // (z^{1/n})*expC(2*pi*ki/n)

u = powC(z,n); // z^n

Other Geometric Classes

In addition to P, objects of type Circle, Plane, Segment, and Sphere can be used
for Euclidean geometry constructions. Simple affine operations are supplied for each
type, as is a draw() function, which represents the object as a path in the screen.

obj.shift(P arg); // translate by arg

obj.move_to(P arg); // move center to arg

obj.scale(double c); // scale about center by c

obj.draw();

A Segment’s “center” is its midpoint. A Plane has no center; move to translates the
Plane to pass through arg, and scale has no effect.

A Circle data structure consists of a center, radius, and a perpendicular unit
vector. Three constructors are provided:

Circle(center=P(0,0,0), double rad=1, normal=E_3);

Circle(P center, P point);

Circle(P p1, P p2, P p3);

The second constructor creates the Circle parallel to the (x1, x2) plane, with given
center, and radius equal to the distance between the arguments. (A warning is printed
if the second argument does not lie on the circle, namely, if the arguments do not
lie in a plane parallel to the (x1, x2) plane.) The third returns the Circle passing
through the given points; the points must not be collinear.

3.6. CREATING AND DRAWING OBJECTS 45

The data defining a Circle are recovered with member functions named
center(), radius(), and perp().

A Plane is specified by a point and normal vector, or by three non-collinear points.
The draw() function clips the plane and draws the resulting polygon. Unless the clip
box has been set manually, the clipped polygon’s vertices will have large coordinates.

A Segment is constructed from its endpoints. The member function midpoint()

returns the center.

A Sphere is specified by a point and a radius—by default the origin and unity, or
by the center and a point on the sphere. Member functions center() and radius()

return the defining data. Capabilities specific to geography and spherical geometry
are described below, pp. 59ff.

The draw() function of a Sphere draws the horizon visible from the current view-
point. While this horizon is a circle in object space, its image in the screen is generally
an ellipse. Antipodal points are not generally mapped to points symmetrically placed
with respect to the center of this ellipse. These effects are most pronounced when the
viewpoint is close to the Sphere and the center is not close to the target.

Intersection

To facilitate geometric computation, ePiX’s Circle, Plane, Segment, and Sphere

classes can be intersected with the * operator. Table 3.2 lists the return types for
each pair of arguments. Intersection is commutative, so only the top half of the table
is shown. For purposes of intersection, a Segment is extended into a line. The sample
file pascal.xp gives typical applications of objects and intersection.

* Segment Circle Plane Sphere

Segment P Segment P Segment

Circle Segment Segment Segment

Plane Segment Circle

Sphere Circle

Table 3.2: Object intersection types.

A Circle has a center, radius, and unit normal; a Plane has a distinguished point
and unit normal; a Segment has two endpoints; a Sphere has a center and radius. An
object is malformed if these conditions are not met. The constructors return well-
formed objects with two exceptions: Circle and Plane create malformed objects
if called with three collinear points. The operator * returns a malformed object if
either argument is malformed, or if the operands are disjoint, tangent, or coincident.
Malformedness is benign: Calling draw() on a malformed object does nothing.

46 CHAPTER 3. REFERENCE MANUAL

Orthonormal Frames

A frame comprises three mutually perpendicular unit vectors. The constructor takes
three vectors. The frame’s third vector e3 is positively proportional to v3, the second
vector e2 is positively proportional to v2%v3, and the first is the cross product, e1 =
e2 × e3. Thus, a frame is right-handed, and does not depend on v1.

The elements of a frame are named sea, sky, and eye, just as for the camera. A
frame can be rotated through an arbitrary angle about any of its elements.

frame(); // the standard basis {E_1, E_2, E_3}

frame fr(v1, v2, v3); // orthonormalize {v1, v2, v3}

fr.sea(); // the first element of fr, etc.

fr.rot1(theta); // rotate fr through theta about sea, etc.

3.6.2 Path-Like Elements

Basic path-like objects are drawn with named commands. Arguments of polygon com-
mands are endpoints/vertices. Except for line and Line, the following are subject
to filling.

line(P p1, P p2, [double expand]);

Line(p1, p2); // draw line through p1, p2 (crop required)

triangle(P p1, P p2, P p3);

rect(P p1, P p2);

quad(P p1, P p2, P p3, P p4); // quadrilateral

circle(ctr=P(0,0,0), rad=1, normal=E_3);

circle(ctr, pt);

circle(pt1, pt2, pt3);

The optional line argument is an expansion parameter: line(p1,p2,t); draws a
segment centered at the midpoint of p1 and p2, with length scaled by 2t/100. (Setting
t = 100 doubles the length, while t = −100 halves the length.) The arguments of
rect() must lie in a plane parallel to a coordinate plane. The arguments to circle

commands are the same as for Circle constructors.
Quadratic and cubic splines are described by their control points. A list of P

is drawn as a “natural” spline (the C2 piecewise cubic curve with vanishing second
derivatives at the endpoints); the number of points per cubic segment must be spec-
ified. Circular and elliptical arcs are given by center, a basis, angular range, and an
optional number of intervals.

spline(P p1, P p2, P p3, [int n]); // quadratic

spline(P p1, P p2, P p3, P p4, [int n]); // cubic

spline(vector<P>, int n); // natural spline

3.6. CREATING AND DRAWING OBJECTS 47

arc(P ctr, rad, t_min, t_max); // parallel to (x1,x2)-plane

ellipse(P ctr, P v1, P v2); // in plane spanned by v1, v2

ellipse(P ctr, P v1, P v2, t_min, t_max, [int n]);

Mathematically, these commands draw parametric paths

Spline: (1− t)2p1 + 2(1− t)tp2 + t2p3, t ∈ [0, 1]

Spline: (1− t)3p1 + 3(1− t)2tp2 + 3(1− t)t2p3 + t3p4, t ∈ [0, 1]

Arc: ctr + (cos t)(rad, 0, 0) + (sin t)(0, rad, 0), t ∈ [tmin, tmax]

Ellipse: ctr + (cos t)v1 + (sin t)v2, t ∈ [tmin, tmax].

If parameter bounds are omitted in an ellipse command, the entire ellipse is drawn.
When the angular range subtends one or more full turns in an arc or ellipse the
curve is subject to filling.

Commands for planar (half-)ellipses remain from ePiX’s early days:

ellipse(P ctr, P radius);

ellipse_left(P ctr, P radius);

ellipse_right(P ctr, P radius);

ellipse_top(P ctr, P radius);

ellipse_bottom(P ctr, P radius);

If radius is P(a,b), these commands draw all or half of the ellipse with given center
in the (x1, x2) plane, axes parallel to the coordinate axes, and axis lengths 2a and 2b.

Two commands are available to mark off right angles or a subtended angle. Each
accepts a spatial location and two non-zero directions, and draws a scene element in
the plane spanned by the vectors.

right_angle(P loc, P v1, P v2, scale=8);

arc_measure(P loc, P v1, P v2, scale=8);

arc_measure(P loc, P v1, P v2, offset, text, align, scale=8);

The right angle command does not check its arguments for perpendicularity. The
arc measure commands mark the small angle subtended by the directions; the label
form places a label at the midpoint of the arc. The (optional) scale argument is the
true size in pt of the marker.

Arrows

Line segments, splines, and arcs can be drawn with arrowheads at one end. In profile,
an arrowhead’s width is 3pt, and its height is 5.5 times the width. The actual printed
height depends on the head’s orientation with respect to the camera. By default, an
arrowhead is a filled triangle. The shape and size are adjusted with declarations:

48 CHAPTER 3. REFERENCE MANUAL

arrow_width(w=3); // width in pt

arrow_ratio(r=5.5); // height-to-width

arrow_inset(c=0); // base indent as frac of ht

Inset= 0 Inset= 0.25 Inset= 0.5
The inset must be between −1 and 1. Each arrow command accepts an optional
scale argument, which scales the arrowhead.

arrow(P tail, P tip, [scale]);

arrow(P p1, P p2, P p3, [scale]); // spline arrows

arrow(P p1, P p2, P p3, P p4, [scale]);

arrow(P ctr, P v1, P v2, t_min, t_max, [scale]); // ellipse

A few “special-purpose” commands are supplied:

dart (P p1, P p2); // same as arrow(p1, p2, 0.5);

aarrow(P p1, P p2); // double-headed arrow <--->

arc_arrow(ctr, rad, t_min, t_max, [scale]);

If an arc arrow is too short, nothing is drawn.

3.6.3 Coordinate Axes and Labels

ePiX provides an axis class for coordinate axes. Labels are generated automatically
in a variety of styles: decimal, scientific notation, fraction, and trigonometric frac-
tion. Logarithmic axes and labels are available. Axis and labeling commands from
Version 1.0 have been retained.

The axis Class

An axis consists of a line segment divided into a specified number of equal-length
subintervals by “major” (long) tick marks. Each subinterval may be divided further
by “minor” (short) tick marks. Minor ticks may be equally-spaced (“Cartesian”)
or logarithmically placed. Finally, a label is written at each major tick mark with
specified offset and alignment. Labels are generated automatically from the endpoints,
so the line should be parallel to a coordinate axis. Label attributes (masking, borders,
font size and face, rotation angle) are determined by the current label style, not by
the axis.

The command

axis(P tail, P head, int n, P offset=P(0,0), [align = none]);

creates an axis joining tail to head, divided into n segments of equal length, with
a major tick mark and label at each division point and endpoint. The offset and
align arguments have the same meaning as for ordinary labels.

The number and length of minor ticks, and the alignment of ticks, are controlled
with member functions:

3.6. CREATING AND DRAWING OBJECTS 49

axis Ax(P(a,c), P(b,c), n);

Ax.subdivide(n); // put n-1 minor ticks in each axis segment

Ax.tick_ratio(r); // minor length = r*major length

Ax.align(AL=c); // align all ticks; AL = t, b, l, r, or c

By default, major ticks are 6pt long and twice the length of minor ticks. The global
declaration tick size(len) sets the major length, subject to “reasonable stylistic
limits”. For visual consistency, tick lengths should not be changed casually.

Labels on an axis may be drawn in several styles, selected with member functions:

Ax.dec(); // decimals (default)

Ax.frac(); // fractions, e.g. 0.5 -> \frac{1}{2}

Ax.trig(); // fractional multiples of \pi

Ax.sci(); // scientific notation, k\times base^N

Ax.unmark(double); // remove label at selected location

Ax.precision(p); // set number of digits for decimal labels

Ax.align_labels(AL); // re-align labels

Arbitrary textual labels depending on one coordinate are obtained by writing a
string-valued function of double and “registering” it:

// f represents x as a string in given precision and base

std::string f(double x, unsigned int prec, unsigned int base);

Ax.label_rep(f);

For example, textual tags can be printed instead of numeric labels.
By default, an axis is Cartesian. The member function log(int b=10) converts

an axis to “log mode” with specified base; this affects both tick marks and labeling.
If b is at least 3, minor tick marks appropriate for a logarithmic axis base b are
drawn. Second, labels are written in decimal or scientific notation appropriately for
a logarithmic axis; that is, “k × bN” (or its decimal value) is written at location
N + logb k.

Minor ticks of a log axis may be labeled individually; again, this is controlled
with member functions:

Ax.tag(d); // labels at N+log_b(d)

Ax.tag235(); // tag 2, 3, and 5 if b=10

Ax.tags(); // tag 1, ..., b-1

Ax.untag(); // remove all tags, including 1

Ax.untag(double); // remove one tag, e.g. Ax.untag(9);

For convenience, an axis object along an edge of the active screen can be created
with a named command:

50 CHAPTER 3. REFERENCE MANUAL

top_axis(n, offset, align);

bottom_axis(n, offset, align);

left_axis(n, offset, align);

right_axis(n, offset, align);

The ticks automatically point into the bounding box.
The functions above create objects or set axis attributes, but write no output.

Tick marks and labels can be printed separately, or at once:

Ax.draw(); // axis, tick marks, and labels

Ax.draw_ticks(); // axis and ticks only

Ax.draw_labels();

Other Axis-Drawing Commands

ePiX formerly supplied commands for drawing simple axes and their labels. These
commands have been kept for compatibility. Horizontal axes are generated with

h_axis(p1, p2, n, align=c); // n subintervals (n+1 ticks)

h_log_axis(p1, p2, n, align=c, base=10);

For vertical axes, use v axis. The style of tick mark is appropriate for an axis of
the given type. Horizontal axis tick marks may be aligned t (above the axis) or b

(below). Similarly, vertical axis ticks may be aligned r or l.
The endpoint arguments of a coordinate axis may be omitted, in which case they

default to p1 = (xmin, 0) and p2 = (xmax, 0) for a horizontal axis, or to p1 = (0, ymin)
and p2 = (0, ymax) for a vertical axis. If the bounding box has integer width and/or
height, omitting the number of points draws tick marks one unit apart.

Labels for a horizontal Cartesian or logarithmic axis are generated with the com-
mands

h_axis_labels(P p1, P p2, int n, P offset, [align]);

h_axis_masklabels(p1, p2, n, offset, [align]);

h_axis_log_labels(p1, p2, [n], offset, [align], base=10);

h_axis_log_masklabels(p1, p2, [n], offset, [align], base=10);

Labels for a vertical axis are generated with v axis labels, etc. The labels are auto-
matically generated to match their horizontal location. The first puts (n+1) evenly-
spaced labels on the segment joining p1 and p2. As with ordinary labels, the offset
is in pt, and the optional LATEX-style alignment option positions the labels using
their corners. The second command draws masked labels according to the current
label masking attributes. The third writes labels in exponential notation, using the
Cartesian coordinate as exponent.

As for coordinate axes, the initial and final points may be omitted in an
axis [mask]labels command, with the same defaults. The offset and number of
labels must always be specified.

3.6. CREATING AND DRAWING OBJECTS 51

Broken Axes

Broken axes are best drawn using page layout, especially if axis labels are to be drawn.
To accomplish the task, create a screen for each piece of axis, using appropriate
Cartesian coordinates for the corners, then inset the screens so the axis pieces are
nearly end to end. A zig-zag glyph signifies the break:

axis_break(P, P, scale=12);

The P arguments are the screen coordinates of the ends to be joined; the optional
third argument is the true height and width in pt of the glyph. The sample file
coord tricks.xp uses layout and axis breaks.

Coordinate Grids

Cartesian grids fill a coordinate rectangle, and have a specified number of lines in
each direction. A polar grid has specified radius, and numbers of rings and sectors.

grid(n1, n2); // fills the bounding box

grid(p1, p2, n1, n2); // fills the box with corners p1, p2

polar_grid(r, n1, n2);

Log and semi-log grids are drawn with analogous syntax:

log_grid (p1, p2, n1, n2, [base1], [base2]); // log-log

log1_grid(p1, p2, n1, n2, [base]); // log-lin

log2_grid(p1, p2, n1, n2, [base]); // lin-log

The ni arguments dictate the number of squares, namely the number of orders of
magnitude spanned in the logarithmic direction(s). The (optional) base arguments
default to 10, and control the number of lines drawn per order of magnitude. As with
Cartesian grids, the corners are optional; if omitted, the grid fills the bounding box.

Graph paper may be created by superimposing grids:

pen(0.25);

grid(10*xsize(), 10*ysize());

pen(0.5);

grid(2*xsize(), 2*ysize());

pen(1);

grid(xsize(), ysize());

3.6.4 The Path Class

A path data structure is an ordered list of points that can be cropped, clipped,
mapped, concatenated, and drawn. The first four constructors mirror polygon-
drawing commands above. Function graphs and parametric paths are built from
a real- or P-valued function f of one variable.

52 CHAPTER 3. REFERENCE MANUAL

path(p1, p2, expand=0); // line (endpoints)

path(p1, p2, p3, [n]); // quadratic spline

path(p1, p2, p3, p4, [n]); // cubic spline

path(p1, v1, v2, t_min, t_max, [n]); // ellipse

path(f, t_min, t_max, [n]);

The member function pt() accepts a P or three (or two) doubles and appends the
specified point to a path. This snippet creates a regular n-gon:

path ngon; // declare new path

for (int i=0; i<=n; ++i)

ngon.pt(cis(i*full_turn()/n)); // works in all angle modes

Compound paths may be built by concatenation. If path1 and path2 share an end-
point, the commands

path1 += path2;

path1 -= path2;

replace path1 with the result of traversing path1 “forward”, then following path2

in the forward or reverse direction (respectively). For expected results, the first (or
last) point on path2 should be the last point of path1. The notation suggests 1-
dimensional homology chains. The sample file contour.xp illustrates path creation
and manipulation.

A path is a data structure, and must be drawn explicitly to create visible output.
By default a path is not a closed loop (even if the first and last points are the same),
and is not filled when drawn. Member functions perform these tasks. Continuing the
n-gon snippet above,

ngon.close(); // mark path as closed

ngon.fill(); // draw filled region if filling is active

ngon.draw(); // print to the screen

path::close() adds a closing edge if necessary. Once a path is closed, no more
points can be added. A closed path clips and crops differently than an open path

with the same data. path::fill() has no effect on an unclosed path.

3.6.5 Function Plotting

The noun “map” refers to a C++ function that accepts one or more double arguments
and returns a double or a P. Mathematically, a map can be depicted in two ways: as
a graph (which retains information about the domain), or as a parametrized curve or
surface (which discards domain information). ePiX assumes that double-valued maps
are graphed and P-valued maps are drawn parametrically. Either sort of depiction is
called a “plot”. ePiX plots are either “wire mesh”, produced by a plot command, or
“shaded”, produced by a surface command.

3.6. CREATING AND DRAWING OBJECTS 53

Basic Plotting

For the moment, “function” means “function of one variable” (precisely, a double-
valued function of a double variable). A function graph depends on the domain and
the number of points to use. Each of the commands

plot(f, t_min, t_max, n);

polarplot(f, t_min, t_max, n);

shadeplot(f, t_min, t_max, n);

graphs the function f on the interval [t min, t max] by dividing the interval into
n subintervals of equal length. The first gives a Cartesian plot, the second a polar
plot with bounds in current angular units, the third shades the region between the
graph and the horizontal axis. If two functions are given to shadeplot, the region
between their graphs is shaded.

Domains and Wiremesh Plots

An ePiX domain is a coordinate box of dimension one, two, or three, specified by
a pair of opposite corners and two meshes (“coarse” and “fine”, respectively) which
specify the amount of data to be plotted. Plotting is explained in detail below.

// [a1,a2] x [b1,b2]: n1 x n2 rectangles, m1 x m2 intervals

domain R2(P(a1,b1), P(a2,b2), mesh(n1,n2), [mesh(m1,m2)]);

// [a1,a2] x [b1,b2] x [c1,c2] divided analogously

domain R3(P(a1,b1,c1), P(a2,b2,c2),

mesh(n1,n2,n3), [mesh(m1,m2,m3)]);

If unspecified, the fine mesh is the same as the coarse mesh. For expected behavior,
the coarse mesh should “divide” the fine mesh, in that mi should be a (usually small)
integer multiple of ni for each i.

A domain may be resized in any coordinate for which the thickness is positive, and
can be sliced by setting one variable to a constant. The result of slicing is a domain

whose dimension is one smaller than the original. Finally, “slices” operators return
the list of domains obtained by setting one variable to evenly-spaced constants. By
default, the number of slices is specified by the coarse mesh. An optional argument
specifies the number of slices. This argument need not be related to the coarse mesh.

R2.resize2(a,b); // [a1,b1] x [a,b]

R2.slice1(t); // set x1 = t

R3.slices3([n]); // (n+1) domains with x3 = const

R R.slices1() R.slices2(3)

54 CHAPTER 3. REFERENCE MANUAL

When possible, resizing preserves grid square sizes. Generally, though, integer trunca-
tion occurs: If R=domain(P(0,0), P(1,1), mesh(10,6)), then R.resize1(0,0.25)

is the rectangle [0, 0.25]× [0, 1] subdivided into 2× 6 subrectangles, since 10÷ 4 = 2
in integer arithmetic. For expected behavior, choose mesh sizes to avoid integer
truncation.

The arguments of a plot command are a map, followed by either a domain or its
logical equivalent.

double f(double t) { return t*t; }

P F(double u, double v) { return P(u, v, exp(u)*Sin(v)); }

P G(double u, double v, double w) { return P(v*w, u*w, u*v); }

plot(f, a, b, n); // f:[a,b] -> R, using n intervals

plot(F, R2); // graph of exp(u)*Sin(v)

plot(G, R3.slice2(0.5); // G: R^3 -> R^3 restricted to y=0.5

By (compiler-enforced) convention, plot commands involving a P-valued map accept
a domain argument, as in the second and third commands above. To plot a double-
valued function, by contrast, supply the logical equivalent of a domain, usually the
endpoints and the number of intervals, as in the first plot command above.

Resizing and slicing allow a map F to be plotted selectively over parts of its domain.
This can be used to emphasize parts of the image, layer scene elements, patch surfaces
together, and so forth. Resize and slice(s) commands may be used directly in a plot

command:

plot(F, R2.resize1(0,0.5));

plot(F, R2.slices1());

Meshes and Plotting

The P arguments of a domain are a pair of opposite corners. The first mesh argument,
the coarse mesh, specifies the number of subdivisions in each coordinate direction.
The second mesh, the fine mesh, determines the number of points used in each direc-
tion when plotting.

Separating the roles of coarse and fine meshes allows a plot to conform closely to
a surface without using a fine grid of curves. Both parts of Figure 3.3 are drawn with
a 6 × 20 coarse mesh. In the first picture, the fine mesh is also 6 × 20, while in the
second, the fine mesh is 12× 60.

The coarse mesh is significant only for domains of dimension at least 2. The coarse
mesh’s size determines the number of curves or surfaces plotted perpendicularly to a
coordinate direction, while the fine mesh’s size determines the number of segments
used along that direction. For predictable results, the fine mesh should be a small
multiple of the coarse mesh.

3.6. CREATING AND DRAWING OBJECTS 55

Figure 3.3: Coarse and fine meshes.

Plotting works analogously for 3-dimensional domains and maps depending on
three variables: The “one-dimensional skeleton” of the domain’s image is drawn. A
P-valued map of three variables can be plotted over a 1- or 2-dimensional domain.
(The effect may be unexpected unless the domain arises by slicing, however.) A map
depending on one or two variables cannot be plotted over a 3-dimensional domain.

Shaded Surfaces

ePiX’s shaded surface plotting implements a degree of hidden surface removal. The
algorithm breaks a surface into mesh fragments, sorts them in decreasing (approxi-
mate) distance to the camera, and prints them. If filling is active, a mesh fragment
is shaded according to the angle between the normal vector and the direction to the
camera, simulating constant ambient lighting; otherwise, the current fill color is used.
This technique works fairly well for surfaces without intersection, and even acceptably
handles intersecting surfaces for which mesh elements intersect only along boundaries.

The syntax of a surface command is identical to a plot command when only a
single surface is drawn. For example,

surface(F, R, cull=0);

plots the P-valued function F over the domain R, the shaded equivalent of the corre-
sponding plot command. The optional cull argument removes elements that point
toward (cull=-1) or away from (cull=1) the camera. Naturally, orientation of mesh
elements depends on the parametrization F, not merely on the surface. Culling re-
duces the output file size, but is useful mostly for closed, convex surfaces.

There are special commands for surfaces of rotation; each accepts a final cull
argument.

surface_rev(f, t_min, t_max, n_lats, n_longs);

surface_rev(f, g, t_min, t_max, n_lats, n_longs=24);

surface_rev(f, g, R, frame coords);

56 CHAPTER 3. REFERENCE MANUAL

The first revolves the graph of f about the x-axis, the second uses the parametric
curve t 7→

(

f(t), g(t)
)

as profile. In each case, the parameter interval [t_min,t_max]
is divided into n_lats equal-length subintervals, n_longs copies of the profile curve
are drawn, and the complete surface (one full turn) is drawn.

The third form uses a domain to control the range of longitudes, and draws a sur-
face of rotation in the Cartesian coordinate system defined by the orthonormal basis
coords, by default the standard basis. The arguments f and g define a parametric
curve in the plane spanned by the first two elements of coords, and the first element
is the axis of rotation.

As in wire mesh plotting, the fine mesh is used to draw the boundaries of surface
patches; this tends to make surfaces look smoother for modest-sized coarse meshes.
If the coarse mesh is too coarse, however, two visually undesirable effects can occur.
First, adjacent regions of the surface may be shaded very differently, since shading
is constant over patches defined by the coarse mesh. Second, a patch nearly tangent
to a line of sight may be drawn badly if the patch bends back on itself, since the
boundary of the patch is drawn, not the visible edge of the mathematical surface. See
samples/artifacts.xp.

Multiple Domains and/or Maps

A scene containing two or more shaded surfaces cannot generally be built up one
surface at a time. Instead, multiple surfaces must be assembled into a single data
structure before they can be drawn. Multiple surfaces are built from one or more
maps and one or more 2-dimensional domains. In the code snippets below, F and G

are P-valued functions of 3 variables, and R is a 3-dimensional domain.
To plot the images of several domains under a single map, assemble the domains

into a list if necessary, then issue a surface command:

surface(F, R.slices3(), cull=0);

domain_list DL(R.slice1(0)); // build domain list

DL.add(R.slice2(0.5)); // add a domain, etc.

surface(G, DL, cull=0); // draw

For multiple maps, ePiX provides the scenery class. Conceptually, scenery is an
agglomeration of shaded surfaces, built one surface at a time from maps and 2-
dimensional domains. The add function accepts two arguments—a map, and either
a domain or a list of domains—and contributes its data to the scenery rather than
plotting immediately. Completed scenery is drawn manually.

scenery S(F, R.slice3(0.25)); // S contains one surface

S.add(F, R.slice2(0)); // S contains two surfaces

S.add(G, R.slices1(3)); // S contains six surfaces

S.draw(cull=0);

3.6. CREATING AND DRAWING OBJECTS 57

Complete examples are included in the samples directory: spherical.xp and
minkowski.xp.

In principle, a scene may contain arbitrarily many surfaces. However, figures that
contain many objects tend to tax LATEX’s internal stacks. Frequent color changes
exacerbate the problem. Even if you use hugelatex (or increase LATEX’s memory), a
figure containing more than a few thousand mesh elements is unlikely to compile. At
moderate resolution, a surface can easily contain 1000 patches. Each shell script has
a command-line option to invoke hugelatex; your mileage may vary.

User-Specified Color Shading

By default, a surface or scenery is colored according to the current fill color. For
finer control, each surface, surface rev, and scenery command accepts an optional
position-dependent color specification.

surface(F, R, color, cull=0);

surface_rev(f, [g], t_min, t_max, n_lats, n_longs, color);

surface_rev(f, g, R, color, [coords]);

scenery S(F, R, color);

S.add(F, R, color);

The color argument is a P-valued function of two or three doubles whose output
is interpreted as a set of RGB densities. If color takes two arguments, they are
domain coordinates, and the surface is colored according to parameter values. If color
takes three arguments, they are Cartesian coordinates, and the surface is colored
according to spatial location. Please see the sample files surface shade.xp and
S2 harmonics.xp.

3.6.6 Calculus Plotting

ePiX provides high-level commands for plotting derivatives and definite integrals,
Riemann sums, tangent lines, slope- and vector fields, and solutions of planar and
spatial systems of differential equations.

In this section, f and g are double-valued functions of one variable.

Utility Functions

sup(f, a, b); // max/min of f on [a,b]

inf(f, a, b);

newton(f, g, x0); // find approximate crossing point

Newton’s method returns the crossing point of the given functions, starting from the
specified seed, which should be reasonably close to the expected solution. If a critical

58 CHAPTER 3. REFERENCE MANUAL

point is hit or 5 iterations pass, a warning is issued and the current result (probably
incorrect) is returned. The second function g defaults to the zero function if omitted.

Derivatives and Integrals

The classes Deriv and Integral are used to calculate values of derivatives and inte-
grals, and to plot these functions.

Deriv df(f); // function object: df(x) = f’(x)

df.eval(t); // return f’(t)

df.left(t); // deriv from left at t: (f(t)-f(t-dt))/dt

df.right(t); // deriv from right at t: (f(t+dt)-f(t))/dt

Integral prim(f,a); // function object: prim(x) = int_a^x f

prim.eval(b); // numerical integral of f over [a,b]

double val(Integral(f).eval(1)); // val = \int_0^1 f

The lower limit on an integral is 0 by default. Derivs and Integrals can be used
directly in a plot command:

plot(Deriv(f), a, b, n); // plot f’ over [a,b]

plot(Integral(f, x0), a, b, n);

riemann_sum(f, a, b, n, TYPE);

The second graphs the definite integral x 7→
∫ x

x0

f(t) dt over [a, b]. As above, x0 de-
faults to 0. The third draws rectangles or trapezoids whose area approximates the
definite integral of f over [a, b]. The TYPE may be UPPER, LOWER, LEFT, RIGHT, MIDPT,
or TRAP.

Tangent lines and envelopes (families of tangent lines) are drawn with

tan_line(f, t); // f real- or vector-valued

envelope(f, t_min, t_max, n); // family of tangent lines

tan_field(f, g, t_min, t_max, n); // field of tangents

The sample files conic.xp and lissajous.xp illustrate these features.

Systems of Differential Equations

Let F be a P-valued function of two or three variables.

ode_plot(F, p_0, t_min, t_max, n);

flow(F, p_0, t_max, n);

The first plots the solution curve of the initial-value problem ẋ = F (x), x(0) = p0,
over the specified time interval. If tmin is omitted, its value is 0, so the curve starts
at p0. With manual calculation to rotate a planar field a quarter turn, ode plot can

3.6. CREATING AND DRAWING OBJECTS 59

be used to draw level curves (isobars) of a function of two variables; see the sample
file dipole.xp. The flow function returns the result of starting at p0 and flowing
by F for time tmax, using Euler’s method with n time steps. This is useful for placing
markers or arrowheads precisely along a flow line.

A planar or spatial vector field itself may be plotted over a domain R in three
styles:

vector_field(F, R, [scale]); // true length

dart_field (F, R, [scale]); // const length

slope_field (F, R, [scale]); // const length

The field is sampled at the grid points of the coarse mesh. If the domain is 2-
dimensional, the plot is a planar slice of the field, even if the field depends on three
variables. If the domain is 3-dimensional, the field is drawn in successive slices x3 =
const, starting at the height of the first corner of R and ending at the height of the
second corner.

The optional final argument, which defaults to 1, scales the arrowheads in a vector
field, and scales the (constant) length of field elements for slope and dart fields.
The sample files layout2.xp, lorenz.xp, slopefield.xp, and vfield.xp illustrate
usage.

In each field-plotting command, the domain argument may be replaced by two
points, representing corners of a coordinate rectangle, and two integers, the number
of grid intervals in the selected coordinate directions. Only planar slices of a vector
field can be plotted using the alternative syntax.

3.6.7 Non-Euclidean Geometry

ePiX provides limited features for spherical and hyperbolic geometry: the ability to
draw lines in the half-plane and Poincaré disk models of the hyperbolic plane, and
to draw latitudes, longitudes, great circle arcs, spherical triangles, regular polyhedra,
and parametrized curves on a sphere.

Hyperbolic line segments are specified by their endpoints in the upper half space
or ball (Poincaré) models. In each case there is no output if either endpoint lies
outside the model.

hyperbolic_line(p, q);

disk_line(p, q);

For compatibility with 2-dimensional hyperbolic space, the half-space model is the
set {(x1, x2, x3) | x2 > 0}.

A frame determines geographical coordinates on a Sphere: the first element points
toward longitude 0 on the equator, the third element points to the north pole. A
latitude line depends on a Sphere, a frame, the numerical latitude, and a range of
longitudes. A longitude line is described similarly.

60 CHAPTER 3. REFERENCE MANUAL

latitude(lat, long_min, long_max, Sphere S, frame coords);

longitude(lngtd, lat_min, lat_max, Sphere S, frame coords);

By default, coords is the standard frame and S is the unit sphere. These commands
draw only the portion of the curve that is visible from the current viewpoint. The
function back latitude draws the invisible portion of a latitude line.

Spherical arcs and triangles are described by their endpoints. Only the direction
vector from the center of the sphere to an endpoint is significant; if a sphere is scaled
or moved, the same function call will draw the corresponding object on the new
sphere.

The following draw the visible (front) portions of great circle arcs:

front_arc(p1, p2, S); // short arc on S from p1 to p2

front_arc2(p1, p2, S); // arc from p1 to -p1 through p2

front_line(p1, p2, S); // great circle through p1 and p2

Triangles and regular (Platonic) polyhedra are provided. The sample file sample/polyhedra.xp
illustrates usage.

front_triangle(p1, p2, p3, S); // spherical triangle

front_tetra(S, coords); // regular tetrahedron

front_cube(S, coords); // hexahedron

front_octa(S, coords); // octahedron

front_dodeca(S, coords); // dodecahedron

front_icosa(S, coords); // icosahedron

Each function has a back version, which draws the hidden portion. The tetrahedron,
cube, and octahedron are (up to scale) inscribed in the cube of side length 2 centered
at the origin whose sides are parallel to frame. The point (1, 1, 1) is a vertex of the
tetrahedron.

Up to scale, the icosahedron’s vertices lie on the golden rectangle with vertices
(±γ, 0,±1) and its images under cyclic permutation of coordinates. The dodecahe-
dron is dual to the icosahedron.

Spherical Geometry

The Sline class represents geodesic arcs on the unit sphere, and provides intersection
and reflection operators.

Sline L1(tail, head); // non-proportional vectors

L1.pole(); // pole of equator

L1.cosine(); // subtended arc

L1.reflect(arg); // reflect arg across L1

L1.reflect(L2); // reflect L2 across L1

L1.collinear(L2); // test for collinearity

3.6. CREATING AND DRAWING OBJECTS 61

L1.cuts(L2); // or crossing

L1.draw(); // arc

L1.draw_front(); // front arc (same for back)

L1.draw_line(); // draw entire line

L1.line_front(); // front line (same for back)

Spherical Plotting

Parametrized paths on a Sphere S (by default the unit sphere) can be specified
either by radial projection of a P-valued curve, or by stereographic projection of a
plane curve given as a pair of double-valued functions:

frontplot_R(phi, t_min, t_max, n, [S]); // radial

frontplot_N(f1, f2, t_min, t_max, n, [S]); // from north pole

frontplot_S(f1, f2, t_min, t_max, n, [S]); // from south pole

Attempts to perform radial projection on a path through the origin will generate
division-by-zero errors. Stereographic projection maps the equatorial plane {x3 = 0}
to the unit sphere by projection from the corresponding pole: N = (0, 0, 1), S =
(0, 0,−1).

Each spherical plot command has a back version that prints only the portion of
the path invisible from the current viewpoint. Because of the way ePiX layers output,
it is generally best to put hidden portions of the input before visible portions, with
line width and/or style that suggests hidden lines.

3.6.8 Data Plotting

Thanks in large part to code and ideas from Marcus Hanwell, files of numerical data
can be created, manipulated, analyzed, plotted (paths, scatter plots, and histograms),
read, and written. The format for a data file is one or more floating-point numbers
per line, with the same number of entries per line. Anything that appears on a line
after the LATEX comment character % is a comment.

ePiX provides two plot commands for file data. The first facilitates plotting
selected columns; the second simplifies plotting the first two columns with one or both
scales logarithmic. Either form can be used to plot selected columns logarithmically.

The general commands read numbers from two or three columns of a specified file,
pass them as arguments to a P-valued function F, and plot the resulting points:

plot("filename", STYLE, [i_1], [i_2], [i_3], [F]);

plot("filename", STYLE, F, [i_1], [i_2], [i_3]);

The first argument is the name of the data file. The STYLE may be PATH, which joins
the points in the order they appear, or any of the marker types in Table 3.1. The
integers ik specify columns from which to extract data; these default, respectively, to

62 CHAPTER 3. REFERENCE MANUAL

the first column, second column, and null (a column of zeroes). If the “coordinate
system” F is omitted in the first command, it defaults to the Cartesian point construc-
tor. The function F is mandatory in the second form; useful choices include log log,
log lin, and lin log, which plot the corresponding coordinate logarithmically.

Data Files

For more elaborate analysis, the data file class presents an interface to a file as an
ordered list of columns. There are two general ways to create a data file: read in
an external file, or generate data (up to three columns) using specified double-valued
functions. In the constructors below, each function fi is a double-valued function of
one variable.

data_file DF("my_data"); // read data from disk file

data_file DF(f1, t_min, t_max, num_pts); // values of f1

data_file DF(f1, f2, t_min, t_max, num_pts);

data_file DF(f1, f2, f3, t_min, t_max, num_pts);

data_file DF(3); // create empty data_file with 3 columns

DF.read("file1"); // read a disk file

Columns of a data file can be transformed by a user-specified function, averaged,
correlated, extracted (for use by other code), scatter plotted, and written to a disk
file at specified precision. Below, the function f is a double-valued function of one
variable and F is a P-valued function of two or three variables, whose components are
written back to the selected columns.

DF.transform(f, i); // apply f to selected column(s)

DF.transform(F, i=1, j=2);

DF.transform(F, i, j, k);

Basic statistical operations on columns are provided.

DF.dot(i,j); // dot product of columns i, j

DF.avg(i); // mean of column i

DF.var(i); // population variance

DF.covar(i,j); // covariance

DF.regression(i,j); // plot regression line

A data file is scatter plotted using syntax as described above.

DF.plot(STYLE, [i1], [i2], [i3], [F]);

DF.plot(STYLE, F, [i1], [i2], [i3]);

Histograms and bar charts are described below.
A data file can be written to a disk file as raw data, or in specified format.

Below, fmt denotes a string-valued formatting function of two variables and myfile

is the name of the disk file to be written.

3.6. CREATING AND DRAWING OBJECTS 63

DF.precision(4); // set to 4 significant figures

DF.write("myfile"); // write as tab-separated columns

DF.write("myfile", fmt, [i1], [i2]); // apply fmt to cols

A column can be extracted as a C++ vector for use by another function.

DF.column(i); // i-th column

DF.column(f, i); // i-th column, transformed by f

Data Containers

ePiX provides a data mask class for culling data from a file according to the values
in a specified column, and a data bins class for sorting data by value.

A data mask consists of an interval of numbers and a “filter” function. The
(closed, open, or half-open) interval is given as a string in standard mathematical
notation, or by its endpoints (for a closed interval). The filter is a double-valued
function of double, by default the identity, f(x) = x.

data_mask dm("[a, b]", [f]);

data_mask dm(a, b, [f]);

A data mask “passes” inputs x if f(x) lies in the interval. The member function
reverse() inverts this logical test.

The data file class has prune functions to cull rows for which a specified col-
umn’s entry satisfies a data mask’s criterion.

DF.prune(dm, i); // remove row if i-th column entry fails

DF.prune(a, b, i); // remove row if i-th column outside [a,b]

A data bins object models an interval divided at specified locations into “bins”,
not necessarily of equal length. Numerical data is read in and the number of points
in each bin counted. The lifetime of a data bins object has two stages. First, “cuts”
(endpoints of subintervals) are added. Then, once data is read, the cuts are “locked”
and cannot subsequently be changed.

// [xmin, xmax] divided into n equal intervals, 1 by default

data_bins db(xmin, xmax, [n]);

db.cut(x); // add a cut at x (if x is in bounds)

db.read(vector<double>); // read data, lock bins

A data bins object can be plotted as a histogram (rectangles’ area is propor-
tional to the bin population), bar chart (rectangles’ height is proportional to the bin
population), or spline interpolation of a bar chart.

db.histogram(c=1); // c = vertical scale factor

db.bar_chart(c=1);

db.plot(c=1);

64 CHAPTER 3. REFERENCE MANUAL

By default (c=1), the height of a bar chart rectangle is the fraction of the total
population contained in the bin; thus, the height is always between 0 and 1. For a
histogram, the height of a rectangle is the fraction of the population per horizontal
unit in the bin; thus, the total area over an interval [a, b] does not depend on how [a, b]
has been subdivided. The sample files dataplot.xp and histogram.xp illustrate use.

Statistical convention dictates cuts be chosen distinctly from data values; that
is, values should all fall strictly within a bin, not at a boundary point. With large,
unknown data sets, this convention may be difficult to uphold. ePiX attempts to
handle anomalous data intelligently, by keeping counts of values “out-of-range” or
“on-cut”.

In detail, if x < a or x > b is a data value, it is counted as out-of-range and does
not contribute to the histogram population. If x = a or x = b, the value counts as
both out-of-range and on-cut but is added to the population of the lowest or highest
bin, respectively. Any other cut appearing as a data input is flagged as on-cut,
and increments the population of each adjacent bin by one-half. When a histogram
or bar chart is written, ePiX prints a warning message summarizing the number of
anomalous data seen.

Error Bars

Simple horizontal and vertical error bars are provided. The final (optional) argument
is the true height or width (respectively) in pt.

h_error_bar(P location, double error, <mark type>, ht=6);

v_error_bar(P location, double error, <mark type>, wd=6);

To create more complex elements, such as asymmetric bars, whisker plots, labeled
error bars, and the like, write a custom function using true-size drawing, see page 36.
For example, a fillable, labeled, asymmetric, vertical rectangular error bar can be
implemented (entirely in ePiX) like this:

void error_bar(P loc, double lo, double hi, P offset,

std::string text, align, double wd=6)

{

const double width(pt_to_screen(0.5*wd)); // converts to 3pt

rect(loc - P(width, lo), loc + P(width, hi));

line(loc - P(width, 0), loc + P(width, 0));

label(loc + P(width, 0), offset, text, align);

}

For stylistic uniformity, functions such as this should be put into a library and used
systematically. Section 4.2 outlines the process of writing, compiling, and using a
custom library.

3.6. CREATING AND DRAWING OBJECTS 65

3.6.9 Legends

A legend systematically labels different parts of a plot by associating visual “keys”
with explanatory text. This tends to be most useful for plots containing several
distinct but conceptually related graphs requiring contrast.

Visually, a legend is represented as an aligned list of rows, each containing a box
(the key), a gap (the label skip), and some text. These rows are printed in a (usually
large) masked label. By default, keys are 12pt squares bordered in black, the label
skip is 6pt, the background is white, and the border is plain black. These attributes
are controlled (simultaneously for all items) with member functions. Parameters of
type double represent lengths in pt.

legend L;

L.backing(color); // set background

L.border(color, [double]); // set border color [and width]

L.border(double); // border width

L.item_border(color, [double]);

L.item_border(double); // same, for item borders

L.label_skip(double);

L.key_size(double);

Legend Keys

There are three types of legend key, representing filled regions, paths, and markers.
Fill and path keys get their visual attributes from the current drawing state. A mark
key must be told the marker type. Each is created by specifying the item text.

L.fill_item(text);

L.path_item(text);

L.mark_item(<mark type>, text);

Keys in the printed legend appear in the same order they are created in the input
file.

Creating a Legend

Normally, a legend is defined near the start of a file, and an item is added at the point
in the file where the corresponding object or plot is drawn, so that the item receives
the correct attributes. A legend is placed into the figure with the draw function.
The arguments have the same meaning as for ordinary labels.

L.draw(P location, P offset, align);

66 CHAPTER 3. REFERENCE MANUAL

All three arguments are mandatory. “Global” legend settings (border, backing, etc.)
may be changed anywhere between the legend’s creation and draw function. The
sample file legend.xp revisits the example on page 18, including a trig-labeled axis
and a legend. The file shadeplot.xp contains filled keys, and dataplot.xp contains
a legend with items of mixed type.

3.7 More About C++

A textbook or similarly detailed reference is essential for serious study of C or C++.
The C Programming Language, second edition, by Kernighan and Ritchie [3], is an ex-
cellent, manageable resource for the basics of procedural programming. C++ Primer

Plus, by Stephen Prata [5], clearly lays out the extensive details of C++. Marshall
Cline’s C++ FAQ Lite [1] engagingly discusses common points of confusion and fur-
nishes tips on good design and programming.

C++ is a powerful, complex language whose syntax is similar to that of C, or to
the scripting languages of Maple and Mathematica. An ePiX input file is source code
for a C++ program that writes a LATEX picture as output. ePiX may be viewed as an
extension to C++; in the same way that LATEX furnishes a high-level interface to TEX,
ePiX provides a high-level bridge between the computational power of C++ and the
LATEX picture environment.

Like all high-level programming languages, C++ provides variables, functions, and
control structures. Variables hold pieces of data such as numerical values and geomet-
ric locations, while functions operate on data. A control structure, such as a loop or
conditional statement, affects the program’s course according to the program’s cur-
rent state. A source file is composed primarily of “statements”, which perform actions
ranging from defining variables and functions to setting figure attributes, performing
calculations, and writing objects to the output file.

3.7.1 Names and Types

Names of variables and functions may consist (only) of letters, digits, and the under-
score character. The first character of a name must not be a digit, and the language
standard reserves names starting with underscore for library authors. Names are
case-sensitive, but it’s usually a bad idea to use a single name capitalized and un-
capitalized in a single file. Numerous capitalization conventions are used informally;
this document uses uncapitalized words separated by underscores for variables and
functions, and occasionally uses all capitals for constants. As with names of LATEX
macros, primary considerations are clarity (of meaning), readability, and consistency.

Every variable in C++ has a “type”, such as integer (int), double-precision floating
point (double), or Boolean (bool, true or false). ePiX provides additional types, the
most common of which is P, for point. The construct P(x,y,z) creates (x, y, z),

3.7. MORE ABOUT C++ 67

while P(x,y) gives (x, y, 0), which is effectively the pair (x, y). A variable is defined
by giving its type, its name, and an initializing expression.

In C and C++, a pointer variable holds the memory address of another variable.
Pointers are useful for manipulating (possibly large) data structures through “han-
dles” of fixed small size. C++ also provides references, which bind an additional name
to an existing object and allow the object to be manipulated through this alias. The
statements

double x=1; // ordinary variable definition

double& rx=x; // bind a reference, signified by &

define a variable x having the value 1, and bind a reference variable rx to it. As long
as rx exists, it refers to x. If the value of x changes, the value of rx does as well.
Conversely, the value of x can be altered by assigning to rx. However, rx is the size
of a pointer, regardless of the size of x, so rx can be passed efficiently in a function
call. Some applications are discussed on page 69.

3.7.2 Functions

In a programming language, the term “function” refers to a block of code that is
executable by name. A C++ function takes a list of “arguments”, and has a “return
value”. This information, together with the function’s name, must be provided when a
function is defined. A function may not be defined inside another function. However,
a function may call other functions (including itself) as part of its execution:

int factorial(unsigned int n)

{

if (n == 0) return 1;

else return n*factorial(n-1);

}

The special type void represents a “null type”. A function that performs an
action but does not return a value has return type void. A function that takes no
arguments may be viewed as taking a single void argument.

Every C++ program has a special function main(), which is called by the operating
system when the program is run. The arguments of main() are command-line argu-
ments, and the return type is an integer that signals success or failure. User-specified
functions must be defined before the call to main() or in a separately-compiled file.

Functions in C++ may be as simple as an algebraic formula or as complex as an
arbitrary algorithm. Greatest common divisors, finite sums, numerical derivatives
and integrals, solutions of differential equations, recursively generated fractal curves,
and curves of best fit are a few applications in ePiX. Several sample files contain
user-level algorithms, which do not require knowledge of ePiX’s internal data struc-
tures. The source file functions.cc contains simple functions defined by algorithms,

68 CHAPTER 3. REFERENCE MANUAL

and functions.h illustrates the use of C++ templates. Other source files, such as
plots.cc, may be consulted for Simpson’s rule, Euler’s method, and the like.

3.7.3 Mathematical Functions

C++ knows several familiar mathematical functions by name:

sqrt exp log log10 ceil floor fabs

(fabs is the absolute value for a floating-point argument.) ePiX provides trig and
inverse trig functions sensitive to angular mode:

Cos Sin Tan

Sec Csc Cot

Acos Asin Atan

The inverse functions are principle branches.
The function pow(x,y) returns xy when x > 0, and atan2(y,x) (N.B. argument

order) returns Arg(x + iy) ∈ (−π, π], the principle branch of arg. C++ knows many
constants to 20 decimal places, such as M PI, M PI 2, and M E for π, π/2, and e
respectively. ePiX defines a few additional functions:

sgn zero sinx cb

sgn sinx cb

sgn is the signum function; zero is the constant function; sinx is the function x 7→
sin(x)/x with the discontinuity removed; cb (for “Charlie Brown”) is the period-2
extension of the absolute value function on [−1, 1].

The GNU C++ library defines other functions, including inverse hyperbolic func-
tions (acosh, etc.), log and exp with base 2, 10, or arbitrary b (log2, etc.), the error
and gamma functions (erf and tgamma [sic], respectively), and Bessel functions of
first and second kind: j0, j1, y0, etc. Use, e.g., jn(5,) to get higher indices. The
GNU C library reference manual [4] describes these and other functions in detail.

Functions may be used in subsequent definitions, and functions of two (or more)
variables are defined in direct analogy to functions of one variable:

double f(double t) { return t*t*log(t*t); } // t^2 \ln(t^2)

double g(double s, double t) { return exp(2*s)*Sin(t); }

3.7. MORE ABOUT C++ 69

3.7.4 Basics of Classes

Unlike C, C++ supports “object-oriented programming”. In a nutshell, a class is an
abstraction in computer code of some concept, such as a point, a sphere, a mapping
that can be plotted, or a camera. Classes allow a programmer to separate an ob-
ject’s interface (the set of meaningful operations) from its implementation (the data
structures and algorithms that realize the interface).

A class implementation consists of members (named data elements) and mem-

ber functions (functions that belong to the class and have free access to members).
C++ classes enforce access permissions on their members, protecting data from being
manipulated except as promised by the interface.

An ideal interface looks like a black box: It hides the implementation completely.
In order to cooperate, two classes need only know each other’s interfaces. This sep-
aration of form and function modularizes a program, and facilitates debugging, code
reuse, and overall maintainability, particularly in large programs.

In simple programming, classes may be treated like built-in types. Each class
object has its own member functions, whose call syntax differs from standard function
calls:

Circle C1(P(1,0), 1.5); // circle of given center and radius

C1.draw(); // member function Circle::draw();

Naturally, this call draws the circle C1. Generally, a member function call consists of
a class object’s name, a period, and the name of the member function. Arguments,
if any, go in the parentheses after the member function name, just as in a regular
function call.

A few short paragraphs cannot do more than scratch the surface of classes and
object-oriented programming. For more details, please consult a book, such as
Prata [5] or Stroustrup [8], or Cline’s on-line FAQ [1].

3.7.5 References and Function Arguments

C and C++ are “call by value” languages. Variables are not passed to a function;
instead a copy of the value is made, and the function operates only on the copy.
Though this feature causes occasional inconvenience, it prevents an object from being
altered unexpectedly by a function call in a different part of the program. Calling
by value helps localize the logic of a program, and circumvents easy-to-write but
extremely hard-to-find bugs.

In C++, a function may accept reference arguments. Passing an object by reference
grants the calling function access to the object itself, not to a copy. There are two
common applications: The object is a large data structure for which copying is “ex-
pensive”, or the function needs to modify its arguments (e.g., a function swap(x,y)

that exchanges the values of x and y).

70 CHAPTER 3. REFERENCE MANUAL

For the first situation, C++ provides the const keyword, which ensures the function
does not modify its arguments, but accepts a reference merely for efficiency. Any
attempt to modify a const argument will be caught by the compiler. Most ePiX

commands accept const reference arguments.
The ability to pass function arguments by reference is sometimes touted as a

feature in C++ texts. However, the technique circumvents the data encapsulation of
calling by value, and should be avoided unless absolutely necessary. If a function
merely “updates” the value of a variable, probably the variable should be of class
type, and the update should be performed by a member function.

A function declaration must indicate that its arguments are references. The dec-
larations below have the indicated idiomatic meanings.

class matrix;

double det(matrix); // call by value, perhaps inefficient

matrix& transpose(matrix&); // probably changes its argument

double trace(const matrix&); // does not change its argument

Unlike pointer arguments, reference arguments impose no syntactic burden on the
user. If A is a matrix, then transpose(A); and trace(A); will compile. You need
not declare explicit reference variables and pass those to the function.

3.7.6 Overloading

C++ provides “overloading”: Multiple functions can be given the same name, so long
as the number and/or type of their arguments differ. (It is not enough for the return
types alone to differ. The compiler must be able to select a function from its calling
syntax.) To the user, the appearance is that a single function intelligently handles
multiple argument lists. Naturally, overloaded names should refer to functions that
are conceptually related.

3.7.7 Scope

A C++ statement ends with a semicolon. A collection of statements enclosed by curly
braces is a “code block”, and may be viewed as a single logical statement. Curly
braces determine a “scope”, inside which variable names may be re-used without
ambiguity. Function bodies are code blocks, as are the alternatives associated to
control statements. A variable defined between curly braces is said to be local to the
scope in which it is defined; its value cannot be used out of scope. Variables should
be declared in the smallest scope possible.

The compiler is not picky about spaces, tabs, and newlines, so an input file should
be formatted to make local scopes visually apparent. emacs automatically indents
code to reflect scope, though the default behavior does not please all users. As with
variable naming, clarity and consistency are paramount.

3.7. MORE ABOUT C++ 71

3.7.8 Headers and Pre-Processing

A C++ source file is compiled in multiple stages that occur transparently to the user.
The first step, pre-processing, involves simple text replacement for file inclusion,
macro expansion and conditional compilation. Next, the source is compiled and
assembled: Human-readable language instructions are parsed, then represented in
assembly language. Finally, the object files are linked: Function calls are resolved
to hard-coded file offsets, possibly involving external library files, and the program
instructions are packaged into an executable binary that the operating system can
run.

Pre-processing is used much less in C++ than in C; the language itself supports
safer and more featureful alternatives to macros, such as const variables and inline
functions. File inclusion and conditional compilation are the chief uses of the pre-
processor. Lines of the form

#include <iostream>

#include "epix.h"

cause the contents of a header file to be read into the source file. A header file
contains variable and function declarations, statements that specify types and names
but do not define actual data. Declarations tell the compiler just enough to resolve
expressions and function calls without knowing specific values or function definitions.

Conditional compilation is similar to conditional LATEX code. For example, a file
might produce either color or monochrome output as follows:

#ifdef COLOR

... // code for generating color figure

#endif /* COLOR */

#ifndef COLOR

... // monochrome code

#endif /* undef COLOR */

The “compiler symbol” COLOR is an ordinary C++ name. To control compilation, either
put a #define COLOR line in the file, or (better) supply the flag on the command line:

epix -DCOLOR <file.xp>

Every #ifdef must have a matching #endif. Commenting the #endif is a good
habit; in a realistic file, the start and end of a conditional block may be separated by
more than one screen.

3.7.9 Comparison with LATEX Syntax

As a programming language, C++ provides certain features common to all languages
(such as LATEX, MetaPost, Perl, Lisp. . .) and adheres to rules of grammar. Salient
differences between LATEX and C++ include:

72 CHAPTER 3. REFERENCE MANUAL

1. Every C++ statement and function call must end with a semicolon. An omit-
ted semicolon may result in a cryptic error message from the compiler. Pre-
processor directives, which start with a #, do not end with a semicolon.

2. Backslash is an escape character in C++:

// Put label $y=\sin x$ at (2,1)

// Note single ^ backslash in output

label(P(2,1), P(0,0), "$y=\\sin x$");

// Double backslash ^^ in source

3. Variable and function names may contain letters (including underscore) and
digits only, are case sensitive, and must begin with a letter.

4. Variables in C++ must have a declared type, such as int (integer) or double

(double-precision floating point). If a variable has global scope and its value
does not change, the definition should probably come in the preamble or at the
beginning of main. Local variables should be defined in the smallest possible
scope. Unlike C, C++ allows variables to be defined where they first appear.

5. C++ requires explicit use of * to denote multiplication; juxtaposition is not
enough. C++ does not support the use of ^ for exponentiation, e.g., t^2 is
invalid. Instead, use t*t or pow(t,2).

6. C++ has single- and multi-line comments. Everything between a double slash
and the next newline is ignored, while the strings /* and */ delimit multi-line
comments. A single-line comment may appear within a multi-line comment,
but the compiler does not nest multi-line comments.

Between them, C and C++ have about 100 reserved keywords which cannot be used
as function or variable names.

3.8 Attribute Quick Reference

In the body of an input file, the “drawing state” determines the figure’s appearance.
Attributes are declarations, set by commands that accept arguments of the stated
type.

A len argument is a double-quoted string containing a number and a two-letter
LATEX length unit, such as "1.5pt" or "6cm". A color argument is a named primary
(Red(), Cyan(), White(), etc.), a Color specified by densities (RGB(...), CMYK(...),
etc.), or a Color object. Using Neutral() as a Color argument generally turns off
the corresponding attribute.

3.8. ATTRIBUTE QUICK REFERENCE 73

• Angular mode: radians(), degrees(), or revolutions().

The angular mode affects all trigonometric operations, including camera rota-
tions, the drawing of arcs and ellipses, polar plotting, label angle, and the trig
functions themselves. Angle-sensitive trig functions are capitalized, e.g., Cos,
Tan.

• Fill style: fill(color), fill(bool), nofill().

• Path style:

– Width: plain(), bold(), bbold(), pen(len).

– Line style: line style(string). The argument is a WYSIWYG sequence
of dashes, spaces, and periods. dash size(double) and dot sep(double)

set the (approximate) length in pt of the pattern. The commands solid(),
dashed(), dotted() define “standard” defaults for brevity.

– Path color: Paths can be drawn using two pens, one atop the other. When
the “base” pen is white (or the background color) and wider than the
“line” pen, a path masks parts of the figure it crosses. A 3-D effect may
be obtained by making the base pen a darker shade than the “line” pen.

pen(color,[len]), base(color,[len])

Standard widths: plain(color), bold(color), bbold(color)

• Text attributes:

– Color: label color(color)

– Mask: label mask(color), label pad(len)

– Border: label border(color, [len]), label border(len). The com-
mand no label border() turns off label borders.

– Font size: font size(LaTeX size), no argument means normalsize.

– Font face: font face(LaTeX font), two-letter font selection string, de-
fault is rm.

– Rotation: label angle(double)

Do not confuse Color constructors with the similarly-named (deprecated) lower-
case attribute-setting commands, rgb(r,g,b), cmyk(c,m,y,k), red(d), etc. These
commands affect text, paths, and filled regions. For example, the single command
red() has the same effect as the three commands pen(Red()), fill(Red()), and
label color(Red()).

74 CHAPTER 3. REFERENCE MANUAL

Chapter 4

Advanced Topics

This chapter covers ad hoc tricks and open-ended techniques that require relatively
more programming sophistication. You will almost surely need an external C++ ref-
erence if you do not speak the language.

4.1 Hidden Object Removal

ePiX writes the output file in the same order that objects appear in the input. The
order is significant because PostScript builds a figure in layers: Objects are drawn
over objects that come earlier in the file. Shaded polygons can be used to obtain
surprisingly effective hidden object removal in surface meshes. This section describes
the data structures defined in the source files surface.*.

The basic idea is to create a shaded polygon class that knows its approximate
distance to the camera. For computational simplicity, a mesh “facet” is treated as a
quadrilateral, located at the arithmetic mean of its vertices. A facet’s boundary is
created from a map and a domain by tracing a fine mesh rectangle counterclockwise.

To draw a parametrized surface, facets are stored in a C++ vector, sorted in de-
creasing order of distance to the camera, and printed to the output file. If filling is
active, the gray density of a facet depends on the cosine of the angle between the
normal vector and the vector from the camera to the element.

This simple algorithm works surprisingly well when mesh elements intersect at
most along complete edges. To incorporate line-like elements (e.g., coordinate axes,
wire-mesh plots) with shaded surfaces, the best technique is often to order high-level
scene elements manually, breaking up shaded surfaces (for example, with domain
resizing or clipping) as necessary. The sample file saddle.xp illustrates possible
techniques.

Shaded surfaces can be decorated with a bit of hackery. For example, the
facet::draw function in facet.cc can be modified easily to draw line elements,
tangents, or normal vectors along with the facet itself. The sample file decorate.xp
contains a couple of ideas. (The decorations are activated by compiler flags; please

75

76 CHAPTER 4. ADVANCED TOPICS

consult the file itself for information on compiling.)

4.2 Extensions

Thanks to a suggestion of Andrew Sterian, ePiX is extensible. User extensions span
a spectrum, from header files that require only basic knowledge of C++ to separately
compiled libraries that add substantial new features. The structure of the source code
is outlined in Section 4.3.

4.2.1 Header Files

A C++ header file conventionally has suffix .h, as in myheader.h. To use this custom
header, put a line #include "myheader.h" in your source file.

User definitions can be easily and robustly implemented with “inline functions”.
Inline functions are superficially similar to macros, but are far more safe and featureful
(since they are handled by the compiler rather than by the pre-processor). Examples
are

inline void Bold() { pen(1.6); }

inline void purple() { rgb(0.5, 0, 0.7); }

inline void draw_square(double s) { rect(P(-s,-s),P(s,s)); }

inline double cube(double x) { return pow(x,3); // x^3 }

The keyword void signifies a function that does not return a value, or (when used
as an implicit parameter) a function that does not accept arguments. Inline function
definitions are syntactically identical to ordinary function definitions, but must occur
in a header file or in the source file where they are used. The examples above might
be used in an input file as follows:

Bold();

draw_square(cube(1.25));

4.2.2 Compiling

The next few sections outline the creation of a “static library” on GNU/Linux, and
explain how to incorporate custom features at runtime. The extensively-commented
sample files std F.cc and std F.h illustrate the techniques described below, and may
be used for guidance and experimentation.

A small library is usually written as a header file, which contains class and function
declarations (also called “prototypes”), and a source file, which contains the actual
code. Conventionally (under *nix), these files have extension .h and .cc respectively.
Header and source files may “include” other header files, to incorporate additional
functionality.

4.2. EXTENSIONS 77

/* my_code.h */

#ifndef MY_CODE

#define MY_CODE

#include <cmath> // standard library math header

#include "epix.h" // ePiX header

using ePiX::P;

namespace Mine { // to avoid name conflicts

// functions for special relativity

double lorentz_norm(const P&);

bool spacelike(const P&);

} // end of namespace

#endif /* MY_CODE */

This file exhibits two “safety features”. The three MY CODE lines prevent the file from
being included multiple times. In a file of this size, inclusion protection is overkill, but
as your code base grows and the number of header files increases, this protection is
essential. Second, the header introduces a “Mine” namespace. Inside this namespace,
two functions are declared as prototypes, giving the function’s return type, name, and
argument type(s). A header file should be commented fairly liberally, so that a year
or two from now you’ll be able to decipher the file’s contents. For a longer file, version
and contact information, an overall comment describing the file’s features, and license
information are appropriate.

Next, the corresponding source file; definitions are also placed into the namespace,
and must match their prototypes from the header file exactly.

/* my_code.cc */

#include "my_code.h"

using namespace ePiX;

namespace Mine {

double lorentz_norm(const P& arg)

{

double x(arg.x1()), y(arg.x2()), z(arg.x3()); // extract coords

return (y-x)*(y+x) + z*z; // -x^2 + y^2 + z^2

}

bool spacelike(const P& arg)

{

return (lorentz_norm(arg) > 0); // true if inequality is

}

} // end of namespace

Copies of these files are included with the source code so you can experiment with

78 CHAPTER 4. ADVANCED TOPICS

them. Next, the source file must be “compiled”, “archived”, and “indexed”. In the
commands below, the percent sign is the prompt.

% g++ -c my_code.cc

% ar -ru libcustom.a my_code.o

% ranlib libcustom.a

Please see your system documentation for details on command options and what
each step does. For linking (below), the name of the library file must begin “lib” and
have the extension .a. Once these steps are successfully completed, put the library
libcustom.a and header file my code.h in your project directory. You’re ready to
use the code in an ePiX figure.

4.2.3 Runtime Linking

The script epix allows input files to be linked with external libraries at run time,
when the input file is compiled into a temporary executable.

epix recognizes command line options and passes them verbatim to the compiler.
The most commonly used options are those of the form

-I<include> -L<libdir> -l<lib>

For example, to link figure.xp against mylibs/libcustom.a, run the command

epix -Lmylibs -lcustom figure

The options -I. -L. tell the compiler to look in the current directory for header and
library files. Compiler options may appear in any order, but must come before the
name of the input file(s).

Compiler options may be placed in the configuration file $HOME/.epixrc, with
syntax as above. A line in the config file that contains a pound sign (#) is a comment,
no matter where in the line the # appears. If any non-comment line fails to start
with a dash, the rest of the file is silently discarded. Command-line options are read
before the config file.

4.2.4 Using Multiple Versions

The script epix links by default against the C math library libm.a and the ePiX

library libepix.a. The command option --no-defaults clears the header and in-
clude paths and removes libepix.a from the link list. The script may therefore be
used with multiple versions of ePiX, a potentially useful feature if you regularly need
to compile old source files, or simply prefer the syntax of an older version.

To install and use (say) Version 1.0.0, build the package according to its INSTALL
instructions, but do not use the makefile to install. Instead, manually install the
header and library only, using their version number:

4.3. PROGRAMMER’S GUIDE 79

install -m 644 epix.h /usr/local/include/epix-1.0.h

install -m 644 libepix.a /usr/local/lib/libepix-1.0.a

A non-system directory may be used instead of /usr/local. To use the old version, a
source file must include the appropriate header file (which is identified by its version
number). To compile, issue a command such as

epix --no-defaults -I/usr/local -L/usr/local -lepix-1.0 file.xp

4.3 Programmer’s Guide

This section briefly surveys ePiX’s implementation, and is intended for (potential)
programmers. The source code is divided into modules with small, well-defined re-
sponsibilities, but the user interface is mostly compatible with the syntax of Ver-
sion 1.0. These constraints demanded a degree of implementation hiding. For ex-
ample, the user-visible classes defined in Color.h, path.h, and screen.h contain
only a pointer to the implementation class, and style data is hidden behind global
commands.

Functionally, the code consists of the user interface; implementation classes com-
prising drawing attributes, spatial objects, screens and representations of their ele-
ments, and output; and miscellaneous utility functions. The headers in each group,
and their contents, are described in Section 4.3.2.

The user interface headers are assembled into a single file, epix.h, and installed in
/usr/local/include by default. In normal use, the shell scripts read only the user
interface header. The individual headers, including the components of epix.h, are
installed in /usr/local/include/epix. These are provided for authors of external
libraries, who may need access to implementation details.

4.3.1 External Packages

ePiX harnesses the computational power of C++ to the typographical capabilities of
LATEX. Consequently, ePiX should be viewed in part as a framework for expressing
numerical data visually.

In the course of your work, you may develop specialized code filling a gap in ePiX’s
functionality. If your code seems likely to be of interest to other users, please consider
bundling it as an external package and notifying the ePiX community so your work
can be linked from the project pages and distributed to interested users.

There are no formal requirements for external packages, but in the interest of
uniformity contributed code should follow the GNU Coding Standards [7]. At a mini-
mum, an external package should build with the standard ./configure; make; make

install commands, and the configure script should accept an option --with-epix

for the user to specify a non-default ePiX install directory.

80 CHAPTER 4. ADVANCED TOPICS

If an external package builds a static library, it should provide a single header con-
taining all the package’s entry points, and enclose its interface in a namespace. Entry
points should not collide with ePiX functions. Naming the package “epix-<...>” is
a good idea, but not essential. For example, a package providing textual nodes and
diagram layout might be named epix-nodes. Input files would use the package with
the lines

#include "epix-nodes.h"

using namespace ePiX-nodes;

and be compiled with

epix -lepix-nodes <file>

The user and internal interfaces of ePiX-1.2 are not likely to change. Still, it’s
prudent to rely only on the user interface in contributed code whenever possible.
Doing so also simplifies your work as an author; your library can simply include the
user header file, and deal only with high-level objects and drawing attributes.

4.3.2 User Interface

These files (in order) comprise the global header epix.h.

enums.h Marker, alignment, Riemann integral, and vector field types.

length.h Physical lengths, conceptually a number and two-letter LATEX length
unit.

interval.h Closed, open, and half-open interval ranges for data culling.

triples.h The P class.

Complex.h The Complex class.

functions.h Angle-sensitive trig functions, miscellaneous utility functions, the
Deriv and Integral classes.

pairs.h Screen locations and displacements, with complex arithmetic operations.

Color.h The Color class interface, named primaries and constructors.

state.h Angle mode; clipping and cropping; label styles; filling; arrow head style;
dot and tick sizes, dash length; line style; line and base pen attributes; color-setting
commands.

frame.h Orthonormal bases.

domain.h Coordinate boxes for function plotting.

camera.h The camera.

screen.h The screen class.

picture.h Dimension-setting, offset, layout, decoration, verbatim text, and output
format commands.

4.3. PROGRAMMER’S GUIDE 81

markers.h Point markers, axis labels, and coordinate axes.

axis.h Coordinate axes and labels in various styles.

legend.h Plot legends.

path.h The path class.

curves.h Polygons, arrows, ellipses, arcs, splines, coordinate grids, and recursive
fractal curves.

circle.h The Circle shape object class.

plane.h The Plane shape object class.

segment.h The Segment shape object class.

sphere.h The Sphere shape object class.

intersections.h Shape object intersection operators.

plots.h Plotting commands.

surface.h Shaded surface plots.

data mask.h Helper class for data pruning.

data file.h Class for storing and representing data.

data bins.h Class for sorting and counting data.

geometry.h Latitudes and longitudes; spherical plotting, arcs, polygons, and poly-
hedra; hyperbolic arcs.

Sline.h The Sline (spherical line) class.

4.3.3 Implementation Classes

Color Base.h The Color implementation interface.

Color CMY.h The CMY color model.

Color CMYK.h The CMYK color model.

Color Gray.h The Gray color model.

Color Neutral.h Each color class has a “Neutral” member that converts colors to
that model by filtering. This file defines the unique “model-less” Neutral color for
which filtering performs no action.

Color RGB.h The RGB color model.

Color Sep.h Classes for CMYK separation.

active screen.h Simple manipulator for the active screen.

picture data.h Picture implementation: two screens (representing the canvas and
the output page), true dimensions and offsets, pointer to output format, list of colors,
and lists of verbatim text to write before and after printing the picture environ-
ment in the output file. For simplicity, the screens and dimensions are public;
encapsulation from the user results from “hiding” this header.

82 CHAPTER 4. ADVANCED TOPICS

Style Attributes

Declaration-style attributes are maintained with functions returning static references:
the angle style(), the arrowhead style(), the label style(), the mark size(),
the paint style(), and the path style(). Each function is declared in the
analogously-named header.

angle units.h Angular modes: radians, revolutions, and degrees.

arrow style.h Arrow head style data: width, ratio, and inset.

label style.h Text object style: Label and mask colors, padding, border color
and width, alignment, font size, font face, and angle.

marker style.h Dot and tick sizes.

paint style.h Line and base pens, fill color.

path style.h Solid, dashed, dotted lines.

pen data.h The pen class.

Objects

arrow data.h Arrow representation.

facet.h Shaded surface elements.

label data.h Text (label and marker) objects.

legend item.h Items for legends.

path data.h Path implementation.

spline.h The natural spline class.

spline data.h Templates for quadratic and cubic splines.

Screen Representation

Elements in a screen are represented polymorphically as “tiles”, of which there are
six types: glyph (textual elements), pen arrow (arrows), pen fill (filled regions),
pen line (path-like elements), verbatim (raw text), and legend tile (legends).

Border and background shape are dictated by the screen mask class. The crop-
ping algorithm assumes the contour of a screen mask is convex.

affine.h Affine maps.

cropping.h Screen mask cropping.

glyph.h Markers and labels.

legend tile.h Screen representation of a legend.

mask diamond.h Screen diamond mask.

mask ellipse.h Screen elliptical mask.

mask rectangle.h Screen rectangular mask.

4.3. PROGRAMMER’S GUIDE 83

pen arrow.h Arrows.

pen fill.h Filled regions.

pen line.h Paths.

screen data.h Screen implementation class.

screen mask.h Screen mask interface.

tile.h Screen element interface.

verbatim.h Text in output stream.

Output

Output is divided into a couple of high-level operations and several “atomic” low-level
operations. To create a new output format, one need only implement the format

interface for the desired file type. Paths and filled regions may be implemented
however the output type dictates.

eepic.h eepic macros.

fmt template.h “skeleton” header for new output formats.

format.h The output interface.

pst.h PSTricks macros.

tikz.h tikz macros.

Utilities

Color Utils.h Functions for setting color channel densities.

clipping.h The clip box.

constants.h Global constants: Line widths; dot, tick, and dash sizes; arrowhead
parameters; miscellaneous numerical constants and internal parameters.

crop algorithms.h Path and loop clipping templates.

deriv.h Finite difference template.

edge data.h Path element representation template.

errors.h Warning and error messages.

frac.h Rational numbers and operators.

halfspace.h Halfspace cutting.

hatching.h Filling regions in eepic.

lens.h Camera lenses.

map.h Wrappers for templated plotting.

plot algorithms.h Plotting templates.

screen crop.h Crop paths and loops.

utils.h Truncation, date and time, line breaking.

84 CHAPTER 4. ADVANCED TOPICS

Appendix A

Software Freedom

Academics in general, and mathematicians in particular, depend on free exchange of
information. We prove theorems or establish experimental results, write up formal
accounts, place preprints on public file servers, and submit papers to peer-reviewed
journals. If accepted, the results—data, techniques, methods of reasoning, citations,
and conclusions—are published in print and become part of the public record, gov-
erned by copyright law. Libraries purchase journal subscriptions, but researchers and
scholars may use ideas from the literature merely by giving appropriate citations in
their own work. “Theft” arises from false claims of authorship.

Carried over to software, the academic process would guarantee rights similar to
those provided by the GNU General Public License (GPL):

• (GPL 0) To run a program for any purpose.

• (GPL 1) To study how the program works, and adapt it to your needs.

• (GPL 2) To redistribute copies of the program.

• (GPL 3) To improve the program, and release improvements to the public, so
that the whole community benefits.

In reality, attitudes toward software differ markedly. Most academics work on a
proprietary platform, use proprietary software for research and teaching, and share
information with colleagues and students in proprietary, even obfuscated, data for-
mats. Contrary to the academic ethic, proprietary software licenses restrict access
to information: preventing users from learning how a program works internally (“re-
verse engineering”), limiting the number of users who may run a piece of software,
and forbidding users from running (or sometimes even installing) a purchased copy
on multiple machines.

Restrictions on use aside, if one cannot examine a program’s source code, one
cannot fully trust the output, any more than one can trust (for purposes of scientific
publication) results of a commercial testing lab.

85

86 APPENDIX A. SOFTWARE FREEDOM

Consider a hypothetical future world in which scholarly results are disseminated
like software. Instead of subscriptions, journals sell licenses granting readership to
a specified number of individuals. Photocopying an article for a class or research
seminar constitutes “piracy”, though if the institution has purchased a sufficiently
large site license the teacher or speaker may bring the physical volume to class and
project the pages onto a screen.

Of course, reading an article is scarcely enlightening. Mathematics papers contain
only the statements of theorems. Merely opening the journal binds the reader to a
lengthy legal agreement, stating that theorems be used only for specific purposes and
threatening serious legal consequences for attempting to discover the author’s proofs.

The actions of a single student, employee, or faculty member can expose an insti-
tution to a costly “journal audit” from the Mathematical Society of America (MSA),
with the institution responsible for legal costs if the audit reveals license violations
anywhere in the organization.

Mathematicians who long for the Old Days when papers contained proofs and were
shared freely are dismissed as idealistic cranks or labeled anti-business communists.
Common knowledge asserts the obvious superiority of proprietary journals, and the
necessity of licenses for keeping mathematicians gainfully employed.

Back in our world, some vendors have attempted to placate opponents of closed
source with “shared source” licenses, under which one may sign a non-disclosure
agreement and subsequently examine source code. In the future world analogy, a
shared source agreement would allow journal licensees to sign an NDA, then see the
proofs of theorems. Readers could thereby correct errors in proofs (benefitting the
publisher by improving the reliability of the journal), but would be legally forbidden
from using the ideas elsewhere (denying benefit to other mathematicians).

Legally and conceptually codifying software as a commodity ignores a fundamental
reality: Like an idea or recipe, software can be copied without loss of the original. The
perception of “theft” by copying arises from an artificial belief that software has an
owner who must be monetarily compensated each time a person acquires a copy. The
nature of software does not enforce the “sale” model in the way services and physical
commodities do. It therefore seems philosophically inappropriate to treat software as
a commodity, and perilous to conform the legal system to the enforcement of such a
model.

At its best, software enhances our productivity and creativity. Sharing software,
like sharing ideas, benefits a larger number of people without detriment to existing
users. I hope this modest program is, in conjunction with the much larger efforts
of others (especially Donald Knuth, Richard Stallman, and the many people who
have contributed to the authorship of LATEX and its packages), useful to you in your
mathematical work.

Please visit the Free Software Foundation, at www.fsf.org, to learn more about

87

free software and how you can contribute to its development and adoption.

88 APPENDIX A. SOFTWARE FREEDOM

Appendix B

Acknowledgments

ePiX is built on the work of many people, many of whom I am unaware. The following
people have contributed, sometimes unknowingly but always generously:

Infrastructure Donald Knuth, Conrad Kwok, Leslie Lamport, Tim Morgan, Piet
van Oostrum, Sunil Podar, Richard Stallman, Till Tantau, Herbert Voß, Timothy
van Zandt

Enhancements Jay Belanger, Robin Blume-Kohout, Julian Gilbey, Marcus Han-
well, Yvon Henel, Svend Daug̊ard Pedersen, Andrew Sterian

Porting and packaging Younès Hafri (Crux), Julian Gilbey (Debian); Tsuguru
Kato (FreeBSD); Markus Dittrich, Danny van Dyk, Christian Faulhammer, Olivier
Fisette, Chris Gianelloni, Michael Hanselmann, Marcus Hanwell, David Holm, Peter
Johanson, Patrick Kursawe, Tobias Scherbaum, Markus Ullmann (Gentoo); Guido
Gonzato (RPM); Rene Rebe (T2)

Debugging, advice, and other assistance Maik Beckmann, Jay Belanger, Fe-
lipe Paulo Guazzi Bergo, Karl Berry, Robin Blume-Kohout, Aran Clauson, Patrick
Cousot, Stephen Gibson, Julian Gilbey, Dov Grobgeld, Bob Grover, Jim Hefferon,
Jacques L’helgoualc’h, Yvon Henel, Hartmut Henkel, Herng-Jeng Jou, Walter Ke-
howski, Paul Kornman, Kevin McCormick, Ross Moore, Mike Protts, Thorsten Riess,
Jean-Michel Sarlat, Alan Sill, Neel Smith, Michael Somos, Andrew Sterian, Ryszard
Tanas, Ben Tillman, Kai Trukenmueller, Torbjorn Vik, Wenguang Wang, Gabe
Weaver, Mariusz Wodzicki

89

90 APPENDIX B. ACKNOWLEDGMENTS

Bibliography

[1] Marshall Cline, C++ FAQ Lite,
http://www.parashift.com/c++-faq-lite/

[2] Uwe Kern, Extending LATEX’s color facilities: the xcolor package, white paper,
Jan. 21, 2007

[3] Brian Kernighan and Dennis Ritchie, The C Programming Language, Second Ed.,
Prentice-Hall Software Series, 1988

[4] Sandra Loosemore, Richard M. Stallman, et. al., The GNU C Library Reference

Manual, GNU Press, 2004

[5] Stephen Prata, C++ Primer Plus, Sams, 2002

[6] Keith Reckdahl, Using Imported Graphics in LATEX2e, Version 2.0, white paper,
Dec. 15, 1997

[7] Richard M. Stallman, et. al., The GNU Coding Standards,
http://www.gnu.org/prep/standards/

[8] Bjarne Stroustrup, The C++ Programming Language, Special Ed., Addison-Wesley,
1997

[9] Timothy van Zandt, PSTricks: PostScript Macros for Generic TEX, Version 0.93a,
white paper, Mar. 12, 1993

91

Index

Affine map, 37
action on labels, 41

Angle
mode, 43, 68
units, 31, 41

Animation, 23–24
Arrow, 47
Aspect ratio, 29
Axes, 48–51

broken, 51
labeling, 48, 49
logarithmic, 50

Backslash character, 22
Bar Charts, 63
Bounding box, 35

Camera, 32–34, 75
color separation, 33
lens, 33
manipulation, 33–34
viewpoint, 32

canvas, 13
Circle, 44
Classes, 69
Clipping, 34
Color, 27, 30–42

blencing, 31
declaration, 42
density, 30
primitive, 30
separation, 33
surface plotting, 57
transparency, 30

Complex number, 44

Conditional statement, 66
C++, 21–23, 66–72
Cropping, 36

Data plotting, 61–64
Domain, 53–55
Drawing style, 38–40

emacs, 9, 12, 21, 24
Error bars, 64

Filling, 38
Fonts, 41
Free software, 7, 85–87
Function, 66–70

call syntax, 69
class member, 69
complex, 44
Euclidean algorithm, 23
mathematical, 68
overloaded, 70
returning void, 67

Graph paper, 51
Graphical interface, 14

Header file listing, 80–83
Hidden object removal, 75–76
Histograms, 63

Input file
comment in, 72
conditional compilation, 71

Installation, 8–10
Intersection, 45

Label, 40–42, 72

92

INDEX 93

alignment, 40
axis, 48–50
backslash in, 42
double quotes, 42
fonts in, 41
masked, 41
offset, 42
rotated, 41

Layout, 25, 34
Legends, 65
Length, 27, 29
Line style, 38–40

Mac OS X, 8
Marker, 40

types of, 42

Output file
writing directly to, 23

Output format, 28

Path, 38–40
class, 51
filled, 38
style, 39

Picture
aspect ratio, 29
bounding box, 29
offset, 29
size, 29

Plane, 45
Plotting, 52–59

calculus, 57–59
data, 61–64
spherical, 59–61
surface, 55–57

Point, 43
Pointer, 67
Preamble, 27

Screen, 32–38
active, 34

Segment, 45
Self-contained figure, 23

Sline, 60
Sphere, 45
Stereograms, 25
string, 22

Variable
local, 70
names, 66
pointer, 67
reference, 69
type of, 66

Viewpoint, 32

Windows operating system, 9
Writing directly to output file, 23

	Introduction
	Software Dependencies
	Setting up an Environment Under Windows

	Installation
	Development

	Getting Started
	Running ePiX
	The Drawing Model
	Tutorial
	C++ Basics
	File Format
	Variables and Functions
	Comments
	Program Execution
	Strings and Raw Output
	Conditionals and Loops

	Animation
	Layout Tricks
	Stereograms
	Inset Images

	Reference Manual
	File Structure
	Picture Size and Aspect Ratio
	Color
	Constructors
	Color Operations

	Scene Attributes
	Angular Mode
	The Camera
	Clipping
	Screens and Page Layout

	Drawing Attributes
	Filled Regions
	Paths
	Text Objects
	Color Declarations

	Creating and Drawing Objects
	Geometric Data Structures
	Path-Like Elements
	Coordinate Axes and Labels
	The Path Class
	Function Plotting
	Calculus Plotting
	Non-Euclidean Geometry
	Data Plotting
	Legends

	More About C++
	Names and Types
	Functions
	Mathematical Functions
	Basics of Classes
	References and Function Arguments
	Overloading
	Scope
	Headers and Pre-Processing
	Comparison with LaTeX Syntax

	Attribute Quick Reference

	Advanced Topics
	Hidden Object Removal
	Extensions
	Header Files
	Compiling
	Runtime Linking
	Using Multiple Versions

	Programmer's Guide
	External Packages
	User Interface
	Implementation Classes

	Software Freedom
	Acknowledgments

