Homework Assignment # 10 DUE: Thursday, April 30, at 5:00pm in Moodle.

The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

- 1. Exercise 9.3
- 2. Exercise 9.4 (You might need to show first that for every $\varepsilon > 0$ there exists an index N such that if $k \ge N$ then $|a_k b_k| < \varepsilon$.)
- 3. Let $(a_k)_{k=2}^{\infty}$ be the sequence defined by $a_k = \frac{2k+1}{k-1}$. Use the definition of convergence to prove that (a_k) converges to 2.
- 4. Let $(a_k)_{k\geq 1}$ be a real sequence and a_{∞} a real number. Consider the following conditions:
 - (i) For every $\varepsilon > 0$, there exists an N such that if $k \ge N$ then $|a_k \ell| < \varepsilon$.
 - (ii) There exists an N such that for every $\varepsilon > 0$, if $k \ge N$ then $|a_k \ell| < \varepsilon$.

Are these conditions logically equivalent? If so, give a proof. If not, give an example of a sequence (a_k) and a real number a_{∞} such that (i) holds but (ii) does not.