Homework Assignment \# 10
DUE: Thursday, April 30, at 5:00pm in Moodle.
The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

1. Exercise 9.3

2. Exercise 9.4 (You might need to show first that for every $\varepsilon>0$ there exists an index N such that if $k \geq N$ then $\left|a_{k}-b_{k}\right|<\varepsilon$.)
3. Let $\left(a_{k}\right)_{k=2}^{\infty}$ be the sequence defined by $a_{k}=\frac{2 k+1}{k-1}$. Use the definition of convergence to prove that $\left(a_{k}\right)$ converges to 2 .
4. Let $\left(a_{k}\right)_{k \geq 1}$ be a real sequence and a_{∞} a real number. Consider the following conditions:
(i) For every $\varepsilon>0$, there exists an N such that if $k \geq N$ then $\left|a_{k}-\ell\right|<\varepsilon$.
(ii) There exists an N such that for every $\varepsilon>0$, if $k \geq N$ then $\left|a_{k}-\ell\right|<\varepsilon$.

Are these conditions logically equivalent? If so, give a proof. If not, give an example of a sequence (a_{k}) and a real number a_{∞} such that (i) holds but (ii) does not.

