Math 243: Mathematical Structures, Spring 202
Prof. Ballantine

Homework Assignment \# 4

DUE: Thursday, February 20, at the beginning of class

The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

1. Prove or disprove:
(a) $\mathscr{P}(A \cup B)=\mathscr{P}(A) \cup \mathscr{P}(B)$
(b) $\mathscr{P}(A \cap B)=\mathscr{P}(A) \cap \mathscr{P}(B)$
2. Exercise 2.12.
3. Prove that for all positive integers n, we have $1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$.
4. Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$. Form the Cartesian product of A and B (give explicitly the elements of $A \times B$.
5. For each of the following mappings, write out the image, $f(S)$, of S under f and the preimage, $f^{*}(T)$, of T under f for the given S and T, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$.
(a) $f(x)=\left\{\begin{array}{ll}x+1 & \text { if } x \text { is even } \\ x & \text { if } x \text { is odd; }\end{array} \quad S=\{0,1,5,9\}, \quad T=2 \mathbb{Z}+1\right.$ (the set of odd numbers).
(b) $f(x)=x^{2} ; \quad S=\{-2,-1,0,1,2\}, \quad T=\{2,7,11\}$.
(c) $f(x)=|x|-x ; \quad S=T=\{-2,-1,0,2,4\}$.
