Homework Assignment \# 5

DUE: Thursday, March 12, at the beginning of class
The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

1. Use mathematical induction to prove that 3 divides $4^{n}-1$ for all positive integers n.
2. For each mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$, determine whether the mapping is injective and/or surjective. Justify all answers.
(a) $f(x)=x+3$
(b) $f(x)=3 x$.
(c) $f(x)=x-|x|$
(d) In each case, how does your answer change if the domain and the co-doamain are \mathbb{R} (i.e., $f: \mathbb{R} \rightarrow$ $\mathbb{R})$? You only need to justify the answers that changed.
3. Use mathematical induction to prove that $1+2 n \leq 3 n$ for all positive integers n.
4. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined by

$$
f(n)=\left\{\begin{aligned}
2 n & \text { if } n \geq 0 \\
-2 n-1 & \text { if } n<0
\end{aligned}\right.
$$

(a) Show that f is bijective.
(b) Find the inverse mapping $f^{-1}: \mathbb{N} \rightarrow \mathbb{Z}$ of f.
5. Exercise 3.5

