Homework Assignment # 5DUE: Thursday, March 12, at the **beginning** of class

The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

- 1. Use mathematical induction to prove that 3 divides $4^n 1$ for all positive integers n.
- 2. For each mapping $f : \mathbb{Z} \to \mathbb{Z}$, determine whether the mapping is injective and/or surjective. Justify all answers.
 - (a) f(x) = x + 3
 - (b) f(x) = 3x.
 - (c) f(x) = x |x|

(d) In each case, how does your answer change if the domain and the co-doamain are \mathbb{R} (i.e., $f : \mathbb{R} \to \mathbb{R}$)? You only need to justify the answers that changed.

- 3. Use mathematical induction to prove that $1 + 2n \leq 3n$ for all positive integers n.
- 4. Let $f : \mathbb{Z} \to \mathbb{N}$ be defined by

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ -2n - 1 & \text{if } n < 0. \end{cases}$$

- (a) Show that f is bijective.
- (b) Find the inverse mapping $f^{-1} : \mathbb{N} \to \mathbb{Z}$ of f.
- 5. Exercise 3.5