Homework Assignment # 6

DUE: Thursday, March 26, at at 5:00pm. Submit in Moodle.

The numbered exercises refer to the manuscript Mathematical Structures. Always justify all assertions.

- 1. Exercise 3.1.
- 2. Exercise 3.9.
- 3. Exercise 3.29 parts (a), (b), and (c).
- 4. Let $n \in \mathbb{Z}^+$ and let $G = n\mathbb{Z}$ be the set of multiples of n.
 - (a) Is addition a binary operation on G? (I.e., is the sum of any two elements in G also in G?)
 - (b) Is (G, +) a group? If so, is it Abelian?

Note: When you check conditions G^2 and G^3 from the definition of a group you have to make sure the identity you found is an element of G and for every $a \in G$, the inverse you found is an element of G.

- 5. Consider the binary operation * on \mathbb{Z} given by n * m = n + m + 1. Prove that $(\mathbb{Z}, *)$ is a group. What is the identity element? For an element $a \in \mathbb{Z}$ what is its inverse? Is the group Abelian?
- 6. Let A be nonempty set.
 - (a) Does the binary operation \cup on $\mathscr{P}(A)$ have an identity element? If so, what is it?
 - (b) Does the binary operation \cap on $\mathscr{P}(A)$ have an identity element? If so, what is it?