### Interface of Biology and Mathematics

#### David B. Damiano

Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA ddamiano@holycross.edu

June 2008





### **BIOLOGY and MATHEMATICS**

#### Why BIOLOGY and MATHEMATICS?

- MATHEMATICAL BIOLOGY is a rapidly growing area of mathematical inquiry
- BIOLOGY provides interesting and important applications of mathematics
- BIOLOGY reveals the importance of mathematical approaches in understanding the world around us
- MATHEMATICS reveals underlying patterns and relationships in biological data
- MATHEMATICS facilitates the study of large amounts of data generated by 21st century BIOLOGY

#### Why STATISTICS?

- The "first" type of mathematics used in biology
- A way to "make sense" out of data, discern structure in data
- The "most everyday-useful" mathematics

#### How much math will we use?

- Basic algebra-a few general formulas
- TI-84 Calculators-all instructions provided

### Methodology and Goals

#### The approach?

- Short formal presentations
- Group activities
- Reports on group activities

#### The takeaway?

- Provide types of (not the exact) exercises to use in your teaching
- Stretch and enhance your ability to use statistics in your teaching
- Enrich your understanding of the use of statistics in the real world

# Controlled Experiments-the Gold Standard

#### Method of Comparison

- Treatment group
- Control group

#### **Guiding Principles**

- Random assignment to treatment and control group
- Double blind
  - Subjects do not know which group they belong to
  - Evaluators do not know which group participants belong to
- Conclusion: Difference in responses due to treatment

# Observational Studies-Making Do

#### Why not randomized controlled experiments?

- Difficulty and expense
- Impossibility of placebos, the first blind
- Danger to subjects
- The alternative?
  - Historical Controls
  - Controls chosen to match profile of treatment group, except for treatment

#### The Issues?

- Confounding factors–Hidden factors that influenced outcome
- Removal of the second blind

# The Polio Epidemic

#### 1954–Preventing Polio (poliomyelitis virus)

- The disease
  - 99% cases asymptomatic
  - Flu-like symptoms, attacks central nervous system, paralysis can result within hours
  - Incidence rate 1 in 2000
  - 5-10% of paralyzed victims die from the disease
- The climate
  - Great public outcry-fear of polio
  - High levels of confidence in science and medicine
  - Nationwide research effort led by National Foundation for Infantile Paralysis (NFIP)
  - Questions of basic science: Killed virus vs. live attenuated virus

# The Salk Vaccine Field Trial

#### The Design: Observational Study or Controlled Experiment?

#### • The Observational Study-the NFIP Plan:

- Treatment group: All second graders who volunteer
- Control group: First and third graders and non-volunteer second graders

Why?

- Supported by Jonas Salk for ethical reasons
- Easier to administer
- Would attract wide public support

Why not?

- Experimental design of the observational study
- Variability of the epidemic
- Self-selection bias

The alternative?

• Double Blind Placebo Controlled Study

## NFIP Study Design

#### A Hybrid: Part Observational Study/Part Controlled Experiment

- 38 States participated
- 27 states: Observational Study
  - Volunteers (69%) placed in the treatment group
  - Those who refused placed in the control group
- 11 states: Controlled experiment
  - Volunteers (60%) randomly assigned to treatment and control groups
  - Treatment: Injected with Salk's vaccine
  - Control group: Injected with a placebo
  - Double blind

## **Trial Data**

| OBSERVATIONAL STUDY |         |      | CONTROLLED EXPERIMENT |         |      |
|---------------------|---------|------|-----------------------|---------|------|
|                     | Size    | Rate |                       | Size    | Rate |
| Treatment           | 225,000 | 25   | Treatment             | 200,000 | 28   |
| Control             | 725,000 | 54   | Control               | 200,000 | 71   |
| No Consent          | 125,000 | 44   | No Consent            | 350,000 | 46   |

- Data rounded to nearest thousand
- Rate per 100,000
- Conclusion:
  - The vaccine worked

# Design of Experiments References

- Statistics, 3rd Ed., D. Freedman, R. Pisani, & R. Purves.
- "An evaluation of the 1954 poliomyelitis vaccine trials-summary report," T. J. Francis, Jr., *American Journal of Public Health*, vol. 45, (1955) pp 1-63.
- The Salk Polio Vaccine Trial of 1954: risks, randomization and public involvement in research," L. Dawson, *Clinical Trials*, vol. 1, (2004), 122-130.
- "Jonas Salk," Wikipedia.