
Topics in Mathematics: Math and Music

Worksheet for Section 5.3: Group Theory

Definition: The set G is a group under the operation ∗ if the following four properties are satisfied:

1. Closure: If a ∈ G and b ∈ G, then a ∗ b ∈ G. This must be true for all elements a and b in
the group G.

2. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for any elements a, b, c ∈ G.

3. Identity: There must exist an element e ∈ G called the identity element such that a∗e = a
and e ∗ a = a. (e preserves the “identity” of the element it is being multiplied by.)

4. Inverse: For every element a ∈ G, there must exist an element a−1 ∈ G called the inverse
of a, such that a ∗ a−1 = e and a−1 ∗ a = e. Note that the inverse of each element must be in
the group G.

Some Examples

• G = Z (the integers) with ∗ = +, the usual addition of two integers. For example, 3 ∗ 5 = 8
because 3 ∗ 5 really means 3 + 5. In this case, the identity element is e = 0 and a−1 = −a
since a ∗ a−1 = a + (−a) = 0 = e. Note that a−1 is always in G because the negative of any
integer is still an integer. Since addition is commutative, we have that a ∗ b = b ∗ a for all a
and b in the group. A group with this property is called a commutative group.

• G = R− {0} (all real numbers except for 0) with ∗ = ×, the usual multiplication of two real
numbers. In this group, 3∗5 = 15 because 3∗5 really means 3 ·5. Here, e = 1 and a−1 = 1/a.
Why did we have to exclude 0 from G? This group is also an example of a commutative
group.

Note: The set G = Z (the integers) is not a group under multiplication. How come?

• G = {0, 1, 2, . . . , 10, 11} with ∗ = + mod 12 (modular arithmetic). In other words, when we
add two elements together, if the result is greater than 11, we subtract a multiple of 12 until
it is in G. For example,

9 ∗ 5 = 9 + 5 = 14 = 2 (mod 12) (since 14− 12 = 2),

or
8 ∗ 4 = 8 + 4 = 12 = 0 (mod 12) (since 12− 12 = 0).

This commutative group is often denoted Z12 and is called the integers mod 12. Although
this group may seem strange, it is exactly how we tell time in countries that use 12-hour
clocks. For example, 2 hours after 11:00 is 13:00 in Britain, but 1:00 in the U.S., so 13:00 =
1:00 (mod 12). What is e for this group? What is the formula for a−1?

Musically speaking, this group is akin to identifying the same note in different octaves. If
the various instruments in an orchestra are all playing C in different registers, we still think
of the note heard as just a “C,” even if the frequencies are different. Identifying all integers
(or notes) that are multiples of 12 (or octaves) apart from each other, is called forming an
equivalence class. This concept is a key guiding principle in twelve-tone music, discussed
in Chapter 7 of the course text.
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Multiplication Tables

One of the best ways to understand a group and its inherent structure is to create a multipli-
cation table, a square table that shows all of the possible products from within the group. This
only makes practical sense for groups with a finite number of elements, known as finite groups.
The groups defined using modular arithmetic are examples of finite groups. A group multiplication
table is sometimes called a Cayley table, named in honor of the English mathematician Arthur
Cayley (1821–95).

Example: Complex Multiplication

Recall the complex number i =
√
−1, defined via the equation i2 = −1. Let G = {1, i,−1,−i}

and ∗ correspond to complex multiplication. The multiplication table for G consists of all possible
products of the elements of G (16 entries). The second row of the table below consists of the four
products 1 ∗ 1 = 1, 1 ∗ i = i, 1 ∗−1 = −1, and 1 ∗−i = −i. Continuing in this fashion, complete the
table below by multiplying each entry in the leftmost column by each entry in the top row. Then
confirm that G is indeed a group by checking the four properties (you may assume that complex
multiplication is associative.) What is the identity element e? What is the inverse of each element?

∗ 1 i −1 −i
1 1 i −1 −i
i
−1
−i

Table 1: The multiplication table for G = {1, i,−1,−i} under complex multiplication.

Example: Symmetries of the Square

Groups can arise in many different arenas, not just in the realm of real or complex numbers.
One group that has some interesting connections to music involves the symmetries of a square. We
start with a square with vertices labeled 1, 2, 3, 4 in clockwise order. A symmetry of the square
is a geometric transformation that preserves the size and shape of the square.

For example, rotating the square 90◦ clockwise about it’s center returns the square to its original
position, but with a different labeling of the vertices. We denote this rotation as R90. Other possible
rotations include R180 and R270. A rotation of 360◦ returns the square to the same position with
the same labeling, so this is really the identity element e (the transformation that doesn’t move the
square). These four symmetries are shown below.

Figure 1: The original square along with rotations of 90, 180, and 270 degrees.
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In addition to rotations, it is possible to reflect the square about a line of symmetry and still
preserve the original shape. There are four such lines: a horizontal line through the center (H),
a vertical line through the center (V ), a southeast diagonal between vertices 1 and 3 (D13), and a
northeast diagonal between vertices 2 and 4 (D24). In Figure 2, we display the four reflections along
with the corresponding labels on the vertices. These are the only possible reflections that preserve
the original position of the square.

Figure 2: The four reflections of the original square through a horizontal, vertical, left-diagonal,
and right-diagonal line of symmetry (shown dashed in each example).

While translations also preserve the shape of the square, the labeled vertices will not change, so
we consider any translation equivalent to the identity element e. Thus, there are eight symmetries of
the square, including the identity transformation. We claim that these eight symmetry-preserving
operations form a group, with multiplication ∗ defined to be the composition of two transformations.
This group is known as the dihedral group of degree 4, and is denoted by D4. To recap, the
eight elements of D4 are the symmetry transformations

D4 = {e, R90, R180, R270, H, V, D13, D24} .

To construct the multiplication table for D4, we define the product a ∗ b to mean perform the
transformation a on the original square first, and then perform transformation b on the result. For
example, R90 ∗R180 means rotate the original square clockwise 90◦ and then rotate again clockwise
by 180◦. The result is R270. Similarly, R180 ∗ R270 = R90, because 180 + 270 = 450 and R450 is
equivalent to R90.

Composing rotations and reflections is a bit more complicated. Using the labels on the vertices
shown in Figures 1 and 2 helps determine the resulting product. It might also be illustrative to build
a model and physically rotate and reflect the square. The figure below demonstrates the composition
H ∗R90 = D13. Note that the order of composition matters — D4 is a non-commutative group! For
instance, H ∗R90 = D13 but R90 ∗H = D24.

Horizontal
Reflection

=⇒

90◦ Rotation
Clockwise

=⇒

Figure 3: The product H ∗R90 = D13.
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Complete the multiplication table for D4 below. A few rows have been provided to help you get
started. Be sure to multiply the elements in the correct order: choose an element from the leftmost
column first, and then compose it with an element from the top row. After you complete the table,
confirm that D4 is indeed a group. Give the inverse of each element.

∗ e R90 R180 R270 H V D13 D24

e e R90 R180 R270 H V D13 D24

R90

R180

R270

H H D13 V D24 e R180 R90 R270

V

D13

D24

Table 2: The multiplication table for the 8 symmetries of the square, D4.

Example: The Musical Subgroup of D4

Recall that the musical symmetries of inversion, retrograde, and retrograde-inversion correspond
to the mathematical transformations of a horizontal reflection, a vertical reflection and a 180◦

rotation, respectively. Transpositions correspond to translations, which we identify with the identity
element e as we did with the symmetries of the square. Consider the set of these four musical
symmetries, M = {e,H, V,R180}. There is something special about M .

Using your results from the group multiplication table for D4, complete the multiplication table
for M given below. Confirm that M , the set of musical symmetries, is a group on its own accord.

∗ e H V R180

e

H

V

R180

Table 3: The multiplication table for M , the four musical symmetries.

The special group M , which arises frequently in mathematics, is sometimes called the Klein
Four-Group, named after the famous German mathematician Felix Klein (1849–1925). (There is
even a “famous” mathematical a cappella group called “The Klein Four.”) Since M is a subset of
D4, we call M a subgroup of D4. In general, a subgroup of a group is a nonempty subset that
forms a group by itself, under the same group operation. Subgroups play an important role in group
theory and help us understand the structure of the larger group.
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