Math and Music Sampler

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA

Topics in Mathematics: Math and Music
MATH 110 Spring 2018
January 23, 2018

Rhythm: Counting

Music is the pleasure the human soul experiences from counting without being aware that it is counting. Gottfried Leibniz

Symbol:	\mathbf{o}	d	d	d		
Note:	whole	half	quarter	eighth	sixteenth	thirty-second
\# of beats:	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$

Table: The different types of notes and their durations, assuming that a quarter note equals one beat, form a geometric sequence.

Do a counting exercise here.

Polyrhythm: Least Common Multiple

A polyrhythm is two distinct rhythmic patterns played simultaneously. Typically, each pattern is equally spaced.

These are common in many different types of music: Indian classical, jazz, African tribal music, modern classical (e.g. Stravinsky's Rite of Spring), even rock music!

Figure: The three-against-two polyrhythm, where the top voice plays three equally spaced notes per measure while the bottom plays two. The last two measures show the same polyrhythm in ${ }_{8}^{6}$ time, demonstrating the precise location of each note.

$$
\operatorname{lcm}(2,3)=6
$$

Polyrhythm: Least Common Multiple

Figure: The four-against-three polyrhythm, where the top voice plays four equally spaced notes per measure while the bottom plays three. The last measure shows the same polyrhythm in ${ }_{16}^{12}$ time, demonstrating the precise location of each note.

$$
\operatorname{lcm}(3,4)=12
$$

Figure: The primary piano part of The National's polyrhythmic hit Fake Empire (2008). The right hand plays in four while the left hand remains in three for the entire piece.

Tuning and Temperament

- Why do some combinations of pitches sound better than others?
- Why does the same note sound different on different instruments?
- How do we tune our instruments? Why are there 12 notes in the octave?

Figure: The overtone series for a low A.

Symmetry in Music: Group Theory

How to make a short motif go a long way:
Translations (shifting graph vertically) \Longleftrightarrow Transpositions (shifting notes up or down)
Ex: Ballpark Music

Vertical Reflection (symmetry between right and left)

Retrograde (music same forward and backward)
Ex: Lean on Me

Horizontal Reflection (symmetry between top and bottom)

Inversion (what goes up, must come down)
Ex: Bach, Bach and more Bach

Symmetry in Music: Retrograde

Figure: Joseph Haydn, Piano Sonata in A major (Hob. XVI/26 or Landon 41, 1773), "Minuet in Reverse"

Change Ringing: An Example

1234	1342	1423
2143	3124	4132
2413	3214	4312
2431	3241	4321
4231	2341	3421
4213	2314	3412
4123	2134	3142
1432	1243	$\frac{1324}{1234}$

Canterbury Minimus (true extent on 4 bells)
There are 4! = 24 different possible rows. Each must be rung exactly once starting and ending with rounds (1 234).

Both musical symmetry and change ringing involve the mathematical subject of group theory.

