Math and Music: Polyrhythmic Music

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA

Topics in Mathematics: Math and Music
MATH 110 Spring 2018
February 1, 2018

Polyrhythmic Music

- A polyrhythm is two distinct rhythmic patterns played simultaneously. Typically, each pattern is equally spaced.
- African tribal music is often polyrhythmic with different drums and percussion instruments playing different rhythms simultaneously.
- Classical Indian Music: tabla (pair of small hand drums). Drummers often play challenging combinations such as 11 beats in one hand and 12 in the other. Rhythmic patterns are a form of language mimicking syllables such as Dha, Tin, Na, Tun, or Ge.

Polyrhythm: 3 versus 2

Figure: The three-against-two polyrhythm, where the top voice plays three equally spaced notes per measure while the bottom plays two. The last two measures show the same polyrhythm in ${ }_{8}^{6}$ time, demonstrating the precise location of each note. Phrase: "hot cup of tea"

Key mathematical idea is the least common multiple, denoted by lcm

$$
\operatorname{lcm}(2,3)=6
$$

The least common multiple indicates how many parts to subdivide the measure into in order to determine the precise location of each note.

Polyrhythm: 4 versus 3

Figure: The four-against-three polyrhythm, where the top voice plays four equally spaced notes per measure while the bottom plays three. The last measure shows the same polyrhythm in ${ }_{16}^{12}$ time, demonstrating the precise location of each note.

$$
\operatorname{lcm}(3,4)=12
$$

Figure: The primary piano part of The National's polyrhythmic hit Fake Empire (2008). The right hand plays in four while the left hand remains in three for the entire piece.

Polyrhythm: Chopin’s Piano Music

Figure: Some difficult polyrhythms in measures 9 and 10 of Chopin's Nocturne in B Major, op. 9, no. 3 (1830-31). Bar 9 features two five-against-three polyrhythms, while the second half of measure 10 shows a seven-against-three pattern.

$$
\operatorname{lcm}(3,5)=15 \quad \text { and } \quad \operatorname{lcm}(3,7)=21
$$

Polyrhythm: Chopin

Exercise: Measure 3 of Chopin's Nocturne in B-flat Minor, op. 9, no. 1 (1830-31) features a particularly challenging polyrhythm. What is the smallest number of subdivisions needed to determine the precise location of each note?

$$
\operatorname{lcm}(12,22)=132
$$

Polyrhythm: Other Examples

- The Rite of Spring, Stravinsky (1913) has complex rhythmic patterns (e.g., unexpected accents, layering of different/competing ideas). Polyrhythms (three-against-two, four-against-three, and six-against-four) can be found in the movement Cortége du Sage (Procession of the Oldest and Wisest One).
- Poème Symphonique, György Ligeti (1962) is a piece for 100 metronomes, all set to randomly different tempos!

Click Here

- Rock and roll: First Tube, Phish; Let Down, Radiohead; The Black Page, Frank Zappa

The Least Common Multiple

How do we compute the least common multiple?
Method I: Write out the multiples of each number and then choose the smallest common multiple between them.

Example: $\operatorname{lcm}(6,8)$
Multiples of 6: $6,12,18,24,30,36,42,48, \ldots$
Multiples of 8: $8,16,24,32,40,48,56, \ldots$
Common multiples: $24,48, \ldots$ so the $\operatorname{Icm}(6,8)=24$.
Note: Here, the answer is not the product of the two numbers.

Formula for the Least Common Multiple

Three Examples:

$$
\operatorname{lcm}(6,7)=42, \quad \operatorname{lcm}(6,8)=24, \quad \operatorname{lcm}(6,9)=18 .
$$

What is different about the first case from the second two? Answer: 6 and 7 have no common factors.

Definition

The greatest common factor of two natural numbers a and b is called the greatest common divisor, denoted as $\operatorname{GCD}(a, b)$. If two numbers a and b have no common factor other than 1 , then $\operatorname{GCD}(a, b)=1$. In this case, a and b are called relatively prime numbers.

Example: $(6,7),(5,8)$ and $(11,60)$ are each pairs of relatively prime numbers.

Formula for the Least Common Multiple

Recall Three Examples:

$$
\operatorname{lcm}(6,7)=42, \quad \operatorname{lcm}(6,8)=24, \quad \operatorname{lcm}(6,9)=18 .
$$

Greatest common divisors are:

$$
\operatorname{GCD}(6,7)=1, \quad \operatorname{GCD}(6,8)=2, \quad \operatorname{GCD}(6,9)=3 .
$$

What's the connection? Look at the product $\operatorname{GCD}(a, b) \cdot \operatorname{lcm}(a, b)$.

$$
\operatorname{Icm}(a, b) \cdot \operatorname{GCD}(a, b)=a b \quad \Longrightarrow \quad \operatorname{Icm}(a, b)=\frac{a b}{\operatorname{GCD}(a b)}
$$

Formula for the Least Common Multiple

$$
\operatorname{Icm}(a, b)=\frac{a b}{\operatorname{GCD}(a b)}
$$

(1) $\operatorname{lcm}(9,15)=45$ because $\frac{9 \cdot 15}{3}=3 \cdot 15=45$.
(2) $\operatorname{lcm}(12,22)=132$ because $\frac{12 \cdot 22}{2}=6 \cdot 22=132$.
(3) $\operatorname{lcm}(24,40)=120$ because $\frac{24 \cdot 40}{8}=3 \cdot 40=120$.

