MATH 134 Calculus 2 with FUNdamentals
Section 10.3: Convergence of Series with Positive Terms

SOLUTIONS

Exercise 1: Use the integral test to determine whether the given series converges or diverges.
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Answer: (a) We start by defining f(z) = 1/y/z = x~'/2. This function is positive, decreasing, and
continuous for x > 1. It is decreasing because f'(x) = —%x*3/2 < 0. Using the integral test, we

compute
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Since the improper integral diverges, the series also diverges.

(b) In this case, we let f(z) = 1/(2? + 1) = (2? + 1)~*. This function is positive, decreasing, and
continuous for z > 1. Tt is decreasing because f’(x) = —2x(x? + 1)72 < 0. Using the integral test, we
compute
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Since the improper integral converges, the series also converges.

Exercise 2: Using an appropriate test for convergence, determine whether the given infinite series
converges or diverges.
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Answer: This series converges by the p-series test.
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Since ny/n = n-n'/? = n®2, the series can be written as Z 7 This is a p series with p = 3/2.
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Since 3/2 > 1, the series converges by the p-series test.
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Answer: This series diverges by the nth term test.

Using L’Hopital’s Rule, or by inspection, we have
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Since lim a, # 0, the series diverges by the nth term test.
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Answer: This series diverges by the integral test.

We let f(z) = 1/(xlnz) = (zlnz)~!. This function is positive, decreasing, and continuous for
x > 2. Tt is decreasing because f'(r) = —(zlnz) ?(Inx + 1) < 0. Using the integral test, we
compute
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The integral is evaluated by doing a u-substitution with v = Inx, du = % dz. This transforms
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the integral into / — du = Inwu. Since the improper integral diverges, the series also diverges.
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