MATH 134 Calculus 2 with FUNdamentals Section 10.3: Convergence of Series with Positive Terms SOLUTIONS

Exercise 1: Use the integral test to determine whether the given series converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Answer: (a) We start by defining $f(x)=1 / \sqrt{x}=x^{-1 / 2}$. This function is positive, decreasing, and continuous for $x \geq 1$. It is decreasing because $f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}<0$. Using the integral test, we compute

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-1 / 2} d x=\left.\lim _{b \rightarrow \infty} 2 x^{1 / 2}\right|_{1} ^{b}=\lim _{b \rightarrow \infty} 2 \sqrt{b}-2=\infty
$$

Since the improper integral diverges, the series also diverges.
(b) In this case, we let $f(x)=1 /\left(x^{2}+1\right)=\left(x^{2}+1\right)^{-1}$. This function is positive, decreasing, and continuous for $x \geq 1$. It is decreasing because $f^{\prime}(x)=-2 x\left(x^{2}+1\right)^{-2}<0$. Using the integral test, we compute
$\int_{1}^{\infty} \frac{1}{x^{2}+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}+1} d x=\left.\lim _{b \rightarrow \infty} \tan ^{-1}(x)\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \tan ^{-1}(b)-\tan ^{-1}(1)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$.
Since the improper integral converges, the series also converges.
Exercise 2: Using an appropriate test for convergence, determine whether the given infinite series converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$

Answer: This series converges by the p-series test.
Since $n \sqrt{n}=n \cdot n^{1 / 2}=n^{3 / 2}$, the series can be written as $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. This is a p series with $p=3 / 2$.
Since $3 / 2>1$, the series converges by the p-series test.
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+4}$

Answer: This series diverges by the nth term test.
Using L'Hôpital's Rule, or by inspection, we have

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+4}=\lim _{n \rightarrow \infty} \frac{2 n}{2 n}=1 \neq 0
$$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges by the nth term test.
(c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Answer: This series diverges by the integral test.
We let $f(x)=1 /(x \ln x)=(x \ln x)^{-1}$. This function is positive, decreasing, and continuous for $x \geq 2$. It is decreasing because $f^{\prime}(x)=-(x \ln x)^{-2}(\ln x+1)<0$. Using the integral test, we compute

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x \ln x} d x=\left.\lim _{b \rightarrow \infty} \ln (\ln x)\right|_{2} ^{b}=\lim _{b \rightarrow \infty} \ln (\ln b)-\ln (\ln 2)=\infty
$$

The integral is evaluated by doing a u-substitution with $u=\ln x, d u=\frac{1}{x} d x$. This transforms the integral into $\int \frac{1}{u} d u=\ln u$. Since the improper integral diverges, the series also diverges.

