MATH 134 Calculus 2 with FUNdamentals

Section 5.6: Net Change

This section focuses on net change, which is the total change in a quantity over a given time interval $a \leq t \leq b$. The key idea comes from the Fundamental Theorem of Calculus, Part 1: the integral of a rate of change equals the net change.

Suppose that $F(t)$ represents some quantity that is changing over an interval of time $a \leq t \leq b$, such as position of a vehicle or the amount of water in a tank. We would like to know the net change over that interval, defined as $F(b)-F(a)$. Since $F(t)$ is the antiderivative of $F^{\prime}(t)$ by definition, we have the following interpretation of the Fundamental Theorem of Calculus, Part 1.

Net Change: The net change of $F(t)$ over the interval $[a, b]$ is found by integrating the rate of change $F^{\prime}(t)$:

$$
\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)
$$

Example 1: The number of cars per hour passing an observation point on a highway (called the traffic flow rate) is given by $r(t)=1000+200 t$, where $t=0$ corresponds to $10 \mathrm{am}(t$ is in hours).
(a) How many cars pass by between 10 am and 12 noon?
(b) How many cars pass by between noon and 3 pm?

Answer: Note that the units of $r(t)$ are cars per hour, which is a rate of change. Using the net change formula above, we have

$$
\int_{a}^{b} r(t) d t=\text { number of cars after } b \text { hours }- \text { number of cars after } a \text { hours. }
$$

Thus, to answer question (a), we integrate $r(t)$ from $t=0(10 \mathrm{am})$ to $t=2$ (noon):

$$
\int_{0}^{2} 1000+200 t d t=1000 t+\left.100 t^{2}\right|_{0} ^{2}=2000+400-0=2400 \text { cars. }
$$

For (b), we integrate $r(t)$ from $t=2$ (noon) to $t=5(3 \mathrm{pm})$:

$$
\int_{2}^{5} 1000+200 t d t=1000 t+\left.100 t^{2}\right|_{2} ^{5}=5000+2500-(2000+400)=5100 \text { cars. }
$$

Exercise 1: A population of rabbits grows at the rate of $10+4 t+\frac{3}{5} t^{2}$ rabbits per week (t is in weeks). Find the number of rabbits after 5 weeks assuming there are 30 rabbits at time $t=0$.

Next we consider the integral of velocity. Suppose that $s(t)$ is the position of an object at time t. As we know from Calc 1, the velocity is found by taking the derivative of position, $v(t)=s^{\prime}(t)$. Thus,

$$
\int_{a}^{b} v(t) d t=\int_{a}^{b} s^{\prime}(t) d t=s(b)-s(a)=\text { net displacement over }[a, b]
$$

However, if we wanted to compute the total distance traveled, we would need to take into account that the direction of motion could change (i.e., $v(t)>0$ might mean traveling to the right, while $v(t)<0$ means traveling to the left). For example, if we run 100 yards and then return back to our starting position, then our net displacement is zero $(s(b)=s(a))$, but the total distance traveled is 200 yards. To find how far we have traveled, we need to integrate the speed $|v(t)|$. This insures we are always integrating a positive rate of change.

Integral of Velocity: For an object in motion with velocity $v(t)$,

$$
\begin{aligned}
\int_{a}^{b} v(t) d t & =\text { net displacement over }[a, b] \\
\int_{a}^{b}|v(t)| d t & =\text { total distance traveled over }[a, b]
\end{aligned}
$$

Exercise 2: A particle has velocity $v(t)=4 t^{2}-28 t+40 \mathrm{ft} / \mathrm{sec}$. Find each of the following:
(a) the displacement over the interval $[0,4]$,
(b) the total distance traveled over $[0,4]$.

