MATH 134 Calculus 2 with FUNdamentals

Section 5.7: *u*-Substitution

Recall the chain rule:

$$\frac{d}{dx} [f(u(x))] = f'(u(x)) \cdot u'(x).$$

If we take the integral of both sides, we find

$$\int f'(u) \ du = \int f'(u(x)) \cdot u'(x) \ dx = \int \frac{d}{dx} [f(u(x))] \ dx = f(u(x)).$$

This suggests a technique for finding an antiderivative: determine the "inside" function u(x) and make a substitution, called a u-sub for short, that turns the integrand into a simpler integral in the variable u. The technique of u-substitution essentially uses the chain-rule backwards.

Example 1: Evaluate $\int 6x(3x^2+7)^8 dx$ using the substitution $u=3x^2+7$.

Answer: Since $u = 3x^2 + 7$, $\frac{du}{dx} = 6x$ or du = 6x dx. Making this substitution, the integral transforms into

$$\int u^8 du = \frac{1}{9}u^9 + c = \frac{1}{9}(3x^2 + 7)^9 + c.$$

Note that we return to the variable x at the end of the problem. We can easily check our answer by using the chain rule:

$$\frac{d}{dx} \left[\frac{1}{9} (3x^2 + 7)^9 + c \right] = (3x^2 + 7)^8 \cdot 6x = 6x(3x^2 + 7)^8,$$

as desired. Here is another example.

Example 2: Evaluate $\int xe^{-x^2} dx$ using the substitution $u = -x^2$.

Answer: Here we have $u = -x^2$ so that $\frac{du}{dx} = -2x$ or du = -2x dx. While we have an x dx term in the integrand, we are missing a factor of -2. We use the simple trick of multiplying and dividing the integrand by -2 to make it look the way we want, remembering that constants pull out of integrals.

$$\int xe^{-x^2} dx = \int -\frac{1}{2} \cdot -2xe^{-x^2} dx = -\frac{1}{2} \int -2xe^{-x^2} dx = -\frac{1}{2} \int e^u du = -\frac{1}{2} e^u + c = -\frac{1}{2} e^{-x^2} + c.$$

Alternatively, we could have solved $\frac{du}{dx} = -2x$ for dx, obtaining $dx = \frac{du}{-2x}$ and then made the substitution. Either way, we obtain the same integral in the variable u. The key to the u-sub technique of integration is to find the correct substitution u and then transform the integral into an easier one that **only involves the variable** u.

Our third example explains how to use u-substitution with a definite integral.

Example 3: Evaluate $\int_0^1 x^2 (1+2x^3)^5 dx$ using the substitution $u=1+2x^3$.

Answer: Since $u = 1 + 2x^3$, we have $du = 6x^2 dx$ so we need to multiply the integrand by 6 and pull out the constant $\frac{1}{6}$. But we also need to change the limits of integration. If x = 0, then $u = 1 + 2(0)^3 = 1$ and if x = 1, then $u = 1 + 2(1)^3 = 3$. Thus, our definite integral becomes

$$\int_0^1 x^2 (1+2x^3)^5 dx = \int_0^1 \frac{1}{6} \cdot 6x^2 (1+2x^3)^5 dx = \frac{1}{6} \int_1^3 u^5 du = \frac{1}{36} u^6 |_1^3 = \frac{1}{36} (3^6-1) = \frac{182}{9}.$$

Exercises:

- 1. Evaluate $\int 12x^3 \sqrt{3x^4 + 1} dx$ using the substitution $u = 3x^4 + 1$.
- 2. Evaluate $\int \frac{4t}{t^2+1} dt$ using the substitution $u=t^2+1$.
- 3. Evaluate $\int \tan \theta \ d\theta$ using the substitution $u = \cos \theta$. Why won't the substitution $u = \sin \theta$ work?
- 4. Evaluate $\int (x-2)\sqrt{x+1} dx$ using the substitution u=x+1.

Hint: Solve for x in order to convert the integrand into a function of only u.

- 5. Evaluate $\int \frac{\cos x + 4}{(\sin x + 4x)^3} dx.$
- 6. Evaluate $\int_1^e \frac{\ln x}{x} dx$.
- 7. Evaluate $\int_0^{\pi/4} \sin^3(2\theta) \cos(2\theta) \ d\theta.$
- 8. Evaluate $\int_{-5}^{5} \frac{x^5 3x^3 + 7x}{x^6 + 4} dx$.