MATH 134 Calculus 2 with FUNdamentals

Section 5.7: u-Substitution

Recall the chain rule:

$$
\frac{d}{d x}[f(u(x))]=f^{\prime}(u(x)) \cdot u^{\prime}(x)
$$

If we take the integral of both sides, we find

$$
\int f^{\prime}(u) d u=\int f^{\prime}(u(x)) \cdot u^{\prime}(x) d x=\int \frac{d}{d x}[f(u(x))] d x=f(u(x))
$$

This suggests a technique for finding an antiderivative: determine the "inside" function $u(x)$ and make a substitution, called a u-sub for short, that turns the integrand into a simpler integral in the variable u. The technique of u-substitution essentially uses the chain-rule backwards.

Example 1: Evaluate $\int 6 x\left(3 x^{2}+7\right)^{8} d x$ using the substitution $u=3 x^{2}+7$.
Answer: Since $u=3 x^{2}+7, \frac{d u}{d x}=6 x$ or $d u=6 x d x$. Making this substitution, the integral transforms into

$$
\int u^{8} d u=\frac{1}{9} u^{9}+c=\frac{1}{9}\left(3 x^{2}+7\right)^{9}+c .
$$

Note that we return to the variable x at the end of the problem. We can easily check our answer by using the chain rule:

$$
\frac{d}{d x}\left[\frac{1}{9}\left(3 x^{2}+7\right)^{9}+c\right]=\left(3 x^{2}+7\right)^{8} \cdot 6 x=6 x\left(3 x^{2}+7\right)^{8}
$$

as desired. Here is another example.
Example 2: Evaluate $\int x e^{-x^{2}} d x$ using the substitution $u=-x^{2}$.
Answer: Here we have $u=-x^{2}$ so that $\frac{d u}{d x}=-2 x$ or $d u=-2 x d x$. While we have an $x d x$ term in the integrand, we are missing a factor of -2 . We use the simple trick of multiplying and dividing the integrand by -2 to make it look the way we want, remembering that constants pull out of integrals.
$\int x e^{-x^{2}} d x=\int-\frac{1}{2} \cdot-2 x e^{-x^{2}} d x=-\frac{1}{2} \int-2 x e^{-x^{2}} d x=-\frac{1}{2} \int e^{u} d u=-\frac{1}{2} e^{u}+c=-\frac{1}{2} e^{-x^{2}}+c$.
Alternatively, we could have solved $\frac{d u}{d x}=-2 x$ for $d x$, obtaining $d x=\frac{d u}{-2 x}$ and then made the substitution. Either way, we obtain the same integral in the variable u. The key to the u-sub technique of integration is to find the correct substitution u and then transform the integral into an easier one that only involves the variable u.

Our third example explains how to use u-substitution with a definite integral.
Example 3: Evaluate $\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{5} d x$ using the substitution $u=1+2 x^{3}$.
Answer: Since $u=1+2 x^{3}$, we have $d u=6 x^{2} d x$ so we need to multiply the integrand by 6 and pull out the constant $\frac{1}{6}$. But we also need to change the limits of integration. If $x=0$, then $u=1+2(0)^{3}=1$ and if $x=1$, then $u=1+2(1)^{3}=3$. Thus, our definite integral becomes

$$
\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{5} d x=\int_{0}^{1} \frac{1}{6} \cdot 6 x^{2}\left(1+2 x^{3}\right)^{5} d x=\frac{1}{6} \int_{1}^{3} u^{5} d u=\left.\frac{1}{36} u^{6}\right|_{1} ^{3}=\frac{1}{36}\left(3^{6}-1\right)=\frac{182}{9}
$$

Exercises:

1. Evaluate $\int 12 x^{3} \sqrt{3 x^{4}+1} d x$ using the substitution $u=3 x^{4}+1$.
2. Evaluate $\int \frac{4 t}{t^{2}+1} d t$ using the substitution $u=t^{2}+1$.
3. Evaluate $\int \tan \theta d \theta$ using the substitution $u=\cos \theta$. Why won't the substitution $u=\sin \theta$ work?
4. Evaluate $\int(x-2) \sqrt{x+1} d x$ using the substitution $u=x+1$.

Hint: Solve for x in order to convert the integrand into a function of only u.
5. Evaluate $\int \frac{\cos x+4}{(\sin x+4 x)^{3}} d x$.
6. Evaluate $\int_{1}^{e} \frac{\ln x}{x} d x$.
7. Evaluate $\int_{0}^{\pi / 4} \sin ^{3}(2 \theta) \cos (2 \theta) d \theta$.
8. Evaluate $\int_{-5}^{5} \frac{x^{5}-3 x^{3}+7 x}{x^{6}+4} d x$.

