MATH 134 Calculus 2 with FUNdamentals
 Section 7.5: Partial Fractions SOLUTIONS

Exercises: Evaluate each of the following integrals using the method of partial fractions.

1. $\int \frac{3 x+20}{x^{2}+4 x} d x$

Answer: Notice that the denominator factors as $x^{2}+4 x=x(x+4)$. To compute the partial fraction decomposition, we seek constants A and B such that

$$
\frac{3 x+20}{x^{2}+4 x}=\frac{A}{x}+\frac{B}{x+4} .
$$

Multiply both sides by the least common denominator $x(x+4)$:

$$
x(x+4)\left(\frac{3 x+20}{x^{2}+4 x}\right)=x(x+4)\left(\frac{A}{x}+\frac{B}{x+4}\right) .
$$

After cancelling, this gives

$$
3 x+20=A(x+4)+B x
$$

To find A and B, plug in the roots of the original denominator: $x=0$ and $x=-4$. Plugging in $x=0$ gives $20=A \cdot 4+B \cdot 0$, which implies $A=5$. Plugging in $x=-4$ gives $8=A \cdot 0+B \cdot(-4)$, which implies $B=-2$.
To compute the integral, we break the fraction into two pieces:

$$
\int \frac{3 x+20}{x^{2}+4 x} d x=\int \frac{5}{x}+\frac{-2}{x+4} d x=5 \ln |x|-2 \ln |x+4|+c .
$$

In the final step, the second integral is computed with the u-substitution $u=x+4$. Note that $d u=d x$ so the integral becomes $-2 \int \frac{1}{u} d u=-2 \ln |u|+c$.
2. $\int \frac{3 x-25}{x^{2}+2 x-15} d x$

Answer: Notice that the denominator factors as $x^{2}+2 x-15=(x+5)(x-3)$. To compute the partial fraction decomposition, we seek constants A and B such that

$$
\frac{3 x-25}{x^{2}+2 x-15}=\frac{A}{x+5}+\frac{B}{x-3} .
$$

Multiply both sides by the least common denominator $(x+5)(x-3)$:

$$
(x+5)(x-3)\left(\frac{3 x-25}{x^{2}+2 x-15}\right)=(x+5)(x-3)\left(\frac{A}{x+5}+\frac{B}{x-3}\right) .
$$

After cancelling, this gives

$$
3 x-25=A(x-3)+B(x+5)
$$

To find A and B, plug in the roots of the original denominator: $x=-5$ and $x=3$. Plugging in $x=-5$ gives $-40=A \cdot(-8)+B \cdot 0$, which implies $A=5$. Plugging in $x=3$ gives $-16=A \cdot 0+B \cdot 8$, which implies $B=-2$.
To compute the integral, we break the fraction into two pieces, each of which can be integrated using simple u-substitutions:

$$
\int \frac{3 x-25}{x^{2}+2 x-15} d x=\int \frac{5}{x+5}+\frac{-2}{x-3} d x=5 \ln |x+5|-2 \ln |x-3|+c .
$$

In the final step, the integrals are computed with the u-substitutions $u=x+5$ and $u=x-3$, respectively.
3. $\int \frac{46-x^{2}}{(x+1)(x-2)(x-4)} d x$

Answer: In this case the denominator is already factored for us; however, notice that there are three roots. In this case, we seek constants A, B, and C such that

$$
\frac{46-x^{2}}{(x+1)(x-2)(x-4)}=\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x-4} .
$$

Multiply both sides by the least common denominator $(x+1)(x-2)(x-4)$:

$$
(x+1)(x-2)(x-4)\left(\frac{46-x^{2}}{(x+1)(x-2)(x-4)}\right)=(x+1)(x-2)(x-4)\left(\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{x-4}\right) .
$$

After cancelling, this gives

$$
46-x^{2}=A(x-2)(x-4)+B(x+1)(x-4)+C(x+1)(x-2)
$$

To find A, B, and C plug in the roots of the original denominator: $x=-1, x=2$, and $x=4$. Plugging in $x=-1$ gives $45=A \cdot 15+B \cdot 0+C \cdot 0$, which implies $A=3$. Plugging in $x=2$ gives $42=A \cdot 0+B \cdot(-6)+C \cdot 0$, which shows $B=-7$. Plugging in $x=4$ gives $30=A \cdot 0+B \cdot 0+C \cdot 10$, which yields $C=3$.
To compute the integral, we break the fraction into three pieces, each of which can be integrated using simple u-substitutions:

$$
\begin{aligned}
\int \frac{46-x^{2}}{(x+1)(x-2)(x-4)} d x & =\int \frac{3}{x+1}+\frac{-7}{x-2}+\frac{3}{x-4} d x \\
& =3 \ln |x+1|-7 \ln |x-2|+3 \ln |x-4|+c \\
& =3 \ln |(x+1)(x-4)|-7 \ln |x-2|+c
\end{aligned}
$$

where the final step uses the property $\ln (a)+\ln (b)=\ln (a b)$.
4. $\int \frac{2 x^{2}+18}{x^{3}-x} d x$

Answer: First, factor the denominator as $x^{3}-x=x\left(x^{2}-1\right)=x(x-1)(x+1)$. We seek constants A, B, and C such that

$$
\frac{2 x^{2}+18}{x^{3}-x}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} .
$$

Multiply both sides by the least common denominator $x(x-1)(x+1)$:

$$
x(x-1)(x+1)\left(\frac{2 x^{2}+18}{x^{3}-x}\right)=x(x-1)(x+1)\left(\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}\right) .
$$

After cancelling, this gives

$$
2 x^{2}+18=A(x-1)(x+1)+B x(x+1)+C x(x-1)
$$

To find A, B, and C plug in the roots of the original denominator: $x=0, x=1$, and $x=-1$. Plugging in $x=0$ gives $18=A \cdot(-1)+B \cdot 0+C \cdot 0$, which implies $A=-18$. Plugging in $x=1$ gives $20=A \cdot 0+B \cdot 2+C \cdot 0$, which shows $B=10$. Plugging in $x=-1$ gives $20=A \cdot 0+B \cdot 0+C \cdot 2$, which yields $C=10$.
To compute the integral, we break the fraction into three pieces, each of which can be integrated using simple u-substitutions:

$$
\begin{aligned}
\int \frac{2 x^{2}+18}{x^{3}-x} d x & =\int \frac{-18}{x}+\frac{10}{x-1}+\frac{10}{x+1} d x \\
& =-18 \ln |x|+10 \ln |x-1|+10 \ln |x+1|+c \\
& =10 \ln \left|x^{2}-1\right|-18 \ln |x|+c
\end{aligned}
$$

where the final step uses the property $\ln (a)+\ln (b)=\ln (a b)$.

