MATH 134 Calculus 2 with FUNdamentals
Section 7.8: Probability and Integration
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1. Find the value of C' that makes p(x) = {
compute P(0 <z < 1) and P(z > 1).
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Answer: Since p(x) = 0 for —oo < z < 0, we need to solve / CEDH dr =1 for C. We have
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Thus we must solve % = 1, which gives C' = 2.
Now that we have the correct value of C, we compute
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Finally, since P(0 <z < 1) = 3 and P(z > 0) = 1 (by definition), it follows by linearity that
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Note: You will get the same result by integrating the PDF from 1 to oo, but using linearity is
a much quicker (and easier) approach.
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ekt o> 0 is a probability density function for any constant k > 0.
e " itx >

2. Show that f(x) = {
This PDF is known as the exponential density function.
Answer: First notice that f(x) > 0 is true since £ > 0. The key item to check is property (ii),

that/ f(z)dx =1. Since f(z) = 0 for —oo < & < 0, we must Showthat/ ke ™™ dx =1
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for any choice of £k > 0. We have
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since k > 0. Note that if £ < 0, the limit above would approach —oo and so the integral would
diverge. This shows that f(z) is a PDF.

3. Suppose that the probability a telephone call made in the US lasts between a and b minutes is
modeled by the exponential density function with k = 1/4.

a) What is the probability that a call lasts between 2 and 3 minutes?
b) What is the probability that a call lasts over an hour?

Answer: We use the PDF from the previous problem replacing k by 1/4. For part a), we
compute
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P2<z<3) = / Ze_ix dr = —e 1% = —¢"14¢2 ~ 0.134 = 13.4%.
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For part b), we compute
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0.000000306 = 0%.
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4. Show that the mean of the exponential density function is 1/k.

Answer: We must show that / xf(x) dr = 1/k where f(x) is the exponential density function

defined in Exercise 2. Since f(x) = 0 when z < 0, this reduces to showing / rke ™ dr = 1/k.
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The integral can be computed using integration by parts with © = x and dv = ke ™" dx. Then
du = dr and v = —e~*. We compute
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since the first two terms above both approach 0 as b — oo (for the first one, use L’Hopital’s
Rule). Thus, the mean of the exponential density function is 1/k.

=VA—a? if —2<z <2 ' . ‘ '
. Show that f(z) = 4 0 Lor is a probability density function, and then
otherwise

calculate its mean. Hint: Draw a graph of f and interpret the integrals in terms of area.

Answer: To see that f(z) is a PDF, we need to check that / f(z) dz = 1. Since the function

is zero for x < —2 and = > 2, we must check that
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Although we could use trig sub with z = 2sin to compute the integral, the easiest approach is
to recognize that y = v/4 — 22 is the top half of the graph of a circle of radius 2 (22 + y? = 4).
Since we are integrating from —2 to 2, the integral is equivalent to the area of the semi-circle,
which is %7‘((2)2 = 2m. Thus, the 27 and % cancel out, giving a value of 1, as desired.

Next, we compute the mean p, using the formula p = / xf(x) dx. Again, since the function

is zero for x < —2 and x > 2, we only need to integrate from —2 to 2. The mean is
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This makes intuitive sense as the graph of the PDF (a semi-circle) is symmetric about « = 0.



