MATH 134 Calculus 2 with FUNdamentals Section 7.8: Probability and Integration

Solutions

1. Find the value of C that makes $p(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{C}{(x+2)^2} & \text{if } x \ge 0 \end{cases}$ a probability density function. Then compute $P(0 \le x \le 1)$ and $P(x \ge 1)$.

Answer: Since p(x) = 0 for $-\infty < x < 0$, we need to solve $\int_0^\infty \frac{C}{(x+2)^2} dx = 1$ for C. We have

$$\int_{0}^{\infty} \frac{C}{(x+2)^{2}} dx = \lim_{b \to \infty} \int_{0}^{b} \frac{C}{(x+2)^{2}} dx$$

$$= \lim_{b \to \infty} C \int_{0}^{b} (x+2)^{-2} dx$$

$$= C \lim_{b \to \infty} -(x+2)^{-1} \Big|_{0}^{b} \qquad (u\text{-sub with } u = x+2)$$

$$= C \left(\lim_{b \to \infty} -(b+2)^{-1} + \frac{1}{2} \right)$$

$$= C \left(\lim_{b \to \infty} -\frac{1}{b+2} + \frac{1}{2} \right)$$

$$= \frac{C}{2}.$$

Thus we must solve $\frac{C}{2} = 1$, which gives C = 2.

Now that we have the correct value of C, we compute

$$P(0 \le x \le 1) = \int_0^1 2(x+2)^{-2} dx = -2(x+2)^{-1} \Big|_0^1 = -\frac{2}{3} + 1 = \frac{1}{3}$$

Finally, since $P(0 \le x \le 1) = \frac{1}{3}$ and $P(x \ge 0) = 1$ (by definition), it follows by linearity that

$$P(x \ge 1) = 1 - \frac{1}{3} = \frac{2}{3}$$

Note: You will get the same result by integrating the PDF from 1 to ∞ , but using linearity is a much quicker (and easier) approach.

2. Show that $f(x) = \begin{cases} 0 & \text{if } x < 0 \\ ke^{-kx} & \text{if } x \ge 0 \end{cases}$ is a probability density function for any constant k > 0.

This PDF is known as the exponential density function.

Answer: First notice that $f(x) \ge 0$ is true since k > 0. The key item to check is property (ii), that $\int_{-\infty}^{\infty} f(x) dx = 1$. Since f(x) = 0 for $-\infty < x < 0$, we must show that $\int_{0}^{\infty} ke^{-kx} dx = 1$

for any choice of k > 0. We have

$$\int_{0}^{\infty} ke^{-kx} dx = \lim_{b \to \infty} \int_{0}^{b} ke^{-kx} dx$$
$$= \lim_{b \to \infty} -e^{-kx} \Big|_{0}^{b}$$
$$= \lim_{b \to \infty} -e^{-kb} + 1$$
$$= \lim_{b \to \infty} -\frac{1}{e^{kb}} + 1$$
$$= 1$$

since k > 0. Note that if k < 0, the limit above would approach $-\infty$ and so the integral would diverge. This shows that f(x) is a PDF.

- 3. Suppose that the probability a telephone call made in the US lasts between a and b minutes is modeled by the exponential density function with k = 1/4.
 - a) What is the probability that a call lasts between 2 and 3 minutes?
 - **b**) What is the probability that a call lasts over an hour?

Answer: We use the PDF from the previous problem replacing k by 1/4. For part **a**), we compute

$$P(2 \le x \le 3) = \int_{2}^{3} \frac{1}{4} e^{-\frac{1}{4}x} dx = -e^{-\frac{1}{4}x} \Big|_{2}^{3} = -e^{-\frac{3}{4}} + e^{-\frac{1}{2}} \approx 0.134 = 13.4\%$$

For part **b**), we compute

$$P(x > 60) = \int_{60}^{\infty} \frac{1}{4} e^{-\frac{1}{4}x} dx$$

= $\lim_{b \to \infty} \int_{60}^{b} \frac{1}{4} e^{-\frac{1}{4}x} dx$
= $\lim_{b \to \infty} -e^{-\frac{1}{4}x} \Big|_{60}^{b}$
= $\lim_{b \to \infty} -\frac{1}{e^{\frac{1}{4}b}} + e^{-15}$
= e^{-15}
 $\approx 0.000000306 = 0\%.$

4. Show that the mean of the exponential density function is 1/k. **Answer:** We must show that $\int_{-\infty}^{\infty} xf(x) dx = 1/k$ where f(x) is the exponential density function defined in Exercise 2. Since f(x) = 0 when x < 0, this reduces to showing $\int_{0}^{\infty} xke^{-kx} dx = 1/k$. The integral can be computed using integration by parts with u = x and $dv = ke^{-kx} dx$. Then du = dx and $v = -e^{-kx}$. We compute

$$\int_{0}^{\infty} xke^{-kx} dx = \lim_{b \to \infty} \int_{0}^{b} xke^{-kx} dx$$

=
$$\lim_{b \to \infty} -xe^{-kx} \Big|_{0}^{b} - \int_{0}^{b} -e^{-kx} dx$$

=
$$\lim_{b \to \infty} -be^{-kb} - 0 - \frac{1}{k}e^{-kx} \Big|_{0}^{b}$$

=
$$\lim_{b \to \infty} -\frac{b}{e^{kb}} - \frac{1}{k}e^{-kb} + \frac{1}{k}$$

=
$$\lim_{b \to \infty} -\frac{1}{ke^{kb}} - \frac{1}{ke^{kb}} + \frac{1}{k}$$

=
$$\frac{1}{k},$$

since the first two terms above both approach 0 as $b \to \infty$ (for the first one, use L'Höpital's Rule). Thus, the mean of the exponential density function is 1/k.

5. Show that $f(x) = \begin{cases} \frac{1}{2\pi}\sqrt{4-x^2} & \text{if } -2 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$ is a probability density function, and then

calculate its mean. Hint: Draw a graph of f and interpret the integrals in terms of area.

Answer: To see that f(x) is a PDF, we need to check that $\int_{-\infty}^{\infty} f(x) dx = 1$. Since the function is zero for x < -2 and x > 2, we must check that

$$\int_{-2}^{2} \frac{1}{2\pi} \sqrt{4 - x^2} \, dx = 1 \quad \text{or} \quad \frac{1}{2\pi} \int_{-2}^{2} \sqrt{4 - x^2} \, dx = 1.$$

Although we *could* use trig sub with $x = 2 \sin \theta$ to compute the integral, the easiest approach is to recognize that $y = \sqrt{4 - x^2}$ is the top half of the graph of a circle of radius 2 $(x^2 + y^2 = 4)$. Since we are integrating from -2 to 2, the integral is equivalent to the area of the semi-circle, which is $\frac{1}{2}\pi(2)^2 = 2\pi$. Thus, the 2π and $\frac{1}{2\pi}$ cancel out, giving a value of 1, as desired.

Next, we compute the mean μ , using the formula $\mu = \int_{-\infty}^{\infty} xf(x) dx$. Again, since the function is zero for x < -2 and x > 2, we only need to integrate from -2 to 2. The mean is

$$\int_{-2}^{2} x \cdot \frac{1}{2\pi} \sqrt{4 - x^2} \, dx = \frac{1}{2\pi} \int_{-2}^{2} x \sqrt{4 - x^2} \, dx$$
$$= \frac{1}{2\pi} \int_{0}^{0} \sqrt{u} \cdot \frac{du}{-2} \qquad (u \text{-sub with } u = 4 - x^2 \text{ and } du = -2x \, dx)$$
$$= -\frac{1}{4\pi} \int_{0}^{0} \sqrt{u} \, du$$
$$= 0.$$

This makes intuitive sense as the graph of the PDF (a semi-circle) is symmetric about x = 0.