MATH 134 Calculus 2 with FUNdamentals
 Section 7.8: Probability and Integration

 Solutions

 Solutions}

1. Find the value of C that makes $p(x)=\left\{\begin{array}{cl}0 & \text { if } x<0 \\ \frac{C}{(x+2)^{2}} & \text { if } x \geq 0\end{array}\right.$ a probability density function. Then compute $P(0 \leq x \leq 1)$ and $P(x \geq 1)$.
Answer: Since $p(x)=0$ for $-\infty<x<0$, we need to solve $\int_{0}^{\infty} \frac{C}{(x+2)^{2}} d x=1$ for C. We have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{C}{(x+2)^{2}} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{C}{(x+2)^{2}} d x \\
& =\lim _{b \rightarrow \infty} C \int_{0}^{b}(x+2)^{-2} d x \\
& =C \lim _{b \rightarrow \infty}-\left.(x+2)^{-1}\right|_{0} ^{b} \quad(u \text {-sub with } u=x+2) \\
& =C\left(\lim _{b \rightarrow \infty}-(b+2)^{-1}+\frac{1}{2}\right) \\
& =C\left(\lim _{b \rightarrow \infty}-\frac{1}{b+2}+\frac{1}{2}\right) \\
& =\frac{C}{2}
\end{aligned}
$$

Thus we must solve $\frac{C}{2}=1$, which gives $C=2$.
Now that we have the correct value of C, we compute

$$
P(0 \leq x \leq 1)=\int_{0}^{1} 2(x+2)^{-2} d x=-\left.2(x+2)^{-1}\right|_{0} ^{1}=-\frac{2}{3}+1=\frac{1}{3} .
$$

Finally, since $P(0 \leq x \leq 1)=\frac{1}{3}$ and $P(x \geq 0)=1$ (by definition), it follows by linearity that

$$
P(x \geq 1)=1-\frac{1}{3}=\frac{2}{3}
$$

Note: You will get the same result by integrating the PDF from 1 to ∞, but using linearity is a much quicker (and easier) approach.
2. Show that $f(x)=\left\{\begin{array}{cc}0 & \text { if } x<0 \\ k e^{-k x} & \text { if } x \geq 0\end{array}\right.$ is a probability density function for any constant $k>0$.

This PDF is known as the exponential density function.
Answer: First notice that $f(x) \geq 0$ is true since $k>0$. The key item to check is property (ii), that $\int_{-\infty}^{\infty} f(x) d x=1$. Since $f(x)=0$ for $-\infty<x<0$, we must show that $\int_{0}^{\infty} k e^{-k x} d x=1$
for any choice of $k>0$. We have

$$
\begin{aligned}
\int_{0}^{\infty} k e^{-k x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} k e^{-k x} d x \\
& =\lim _{b \rightarrow \infty}-\left.e^{-k x}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty}-e^{-k b}+1 \\
& =\lim _{b \rightarrow \infty}-\frac{1}{e^{k b}}+1 \\
& =1
\end{aligned}
$$

since $k>0$. Note that if $k<0$, the limit above would approach $-\infty$ and so the integral would diverge. This shows that $f(x)$ is a PDF.
3. Suppose that the probability a telephone call made in the US lasts between a and b minutes is modeled by the exponential density function with $k=1 / 4$.
a) What is the probability that a call lasts between 2 and 3 minutes?
b) What is the probability that a call lasts over an hour?

Answer: We use the PDF from the previous problem replacing k by $1 / 4$. For part a), we compute

$$
P(2 \leq x \leq 3)=\int_{2}^{3} \frac{1}{4} e^{-\frac{1}{4} x} d x=-\left.e^{-\frac{1}{4} x}\right|_{2} ^{3}=-e^{-\frac{3}{4}}+e^{-\frac{1}{2}} \approx 0.134=13.4 \%
$$

For part b), we compute

$$
\begin{aligned}
P(x>60) & =\int_{60}^{\infty} \frac{1}{4} e^{-\frac{1}{4} x} d x \\
& =\lim _{b \rightarrow \infty} \int_{60}^{b} \frac{1}{4} e^{-\frac{1}{4} x} d x \\
& =\lim _{b \rightarrow \infty}-\left.e^{-\frac{1}{4} x}\right|_{60} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{e^{\frac{1}{4} b}}+e^{-15} \\
& =e^{-15} \\
& \approx 0.000000306=0 \%
\end{aligned}
$$

4. Show that the mean of the exponential density function is $1 / k$.

Answer: We must show that $\int_{-\infty}^{\infty} x f(x) d x=1 / k$ where $f(x)$ is the exponential density function defined in Exercise 2. Since $f(x)=0$ when $x<0$, this reduces to showing $\int_{0}^{\infty} x k e^{-k x} d x=1 / k$.

The integral can be computed using integration by parts with $u=x$ and $d v=k e^{-k x} d x$. Then $d u=d x$ and $v=-e^{-k x}$. We compute

$$
\begin{aligned}
\int_{0}^{\infty} x k e^{-k x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} x k e^{-k x} d x \\
& =\lim _{b \rightarrow \infty}-\left.x e^{-k x}\right|_{0} ^{b}-\int_{0}^{b}-e^{-k x} d x \\
& =\lim _{b \rightarrow \infty}-b e^{-k b}-0-\left.\frac{1}{k} e^{-k x}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{b}{e^{k b}}-\frac{1}{k} e^{-k b}+\frac{1}{k} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{k e^{k b}}-\frac{1}{k e^{k b}}+\frac{1}{k} \\
& =\frac{1}{k}
\end{aligned}
$$

since the first two terms above both approach 0 as $b \rightarrow \infty$ (for the first one, use L'Höpital's Rule). Thus, the mean of the exponential density function is $1 / k$.
5. Show that $f(x)=\left\{\begin{array}{cl}\frac{1}{2 \pi} \sqrt{4-x^{2}} & \text { if }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array} \quad\right.$ is a probability density function, and then calculate its mean. Hint: Draw a graph of f and interpret the integrals in terms of area.
Answer: To see that $f(x)$ is a PDF, we need to check that $\int_{-\infty}^{\infty} f(x) d x=1$. Since the function is zero for $x<-2$ and $x>2$, we must check that

$$
\int_{-2}^{2} \frac{1}{2 \pi} \sqrt{4-x^{2}} d x=1 \quad \text { or } \quad \frac{1}{2 \pi} \int_{-2}^{2} \sqrt{4-x^{2}} d x=1
$$

Although we could use trig sub with $x=2 \sin \theta$ to compute the integral, the easiest approach is to recognize that $y=\sqrt{4-x^{2}}$ is the top half of the graph of a circle of radius $2\left(x^{2}+y^{2}=4\right)$. Since we are integrating from -2 to 2 , the integral is equivalent to the area of the semi-circle, which is $\frac{1}{2} \pi(2)^{2}=2 \pi$. Thus, the 2π and $\frac{1}{2 \pi}$ cancel out, giving a value of 1 , as desired.
Next, we compute the mean μ, using the formula $\mu=\int_{-\infty}^{\infty} x f(x) d x$. Again, since the function is zero for $x<-2$ and $x>2$, we only need to integrate from -2 to 2 . The mean is

$$
\begin{aligned}
\int_{-2}^{2} x \cdot \frac{1}{2 \pi} \sqrt{4-x^{2}} d x & =\frac{1}{2 \pi} \int_{-2}^{2} x \sqrt{4-x^{2}} d x \\
& =\frac{1}{2 \pi} \int_{0}^{0} \sqrt{u} \cdot \frac{d u}{-2} \quad\left(u \text {-sub with } u=4-x^{2} \text { and } d u=-2 x d x\right) \\
& =-\frac{1}{4 \pi} \int_{0}^{0} \sqrt{u} d u \\
& =0
\end{aligned}
$$

This makes intuitive sense as the graph of the PDF (a semi-circle) is symmetric about $x=0$.

