MATH 134 Calculus 2 with FUNdamentals
 Section 7.3: Trigonometric Substitution

This section focuses on integrals involving expressions of the form $\sqrt{a^{2}-x^{2}}$ or $\sqrt{x^{2}+a^{2}}$, where a is a constant. For these types of integrals, the key is to make a trig substitution that converts the integral into a simpler form. Then, after computing the integral in the new variable (usually θ), we use a right triangle and $\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$ to convert back into the original variable.

Useful Trig Identities:

$$
\begin{align*}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \tag{1}\\
1+\tan ^{2} \theta & =\sec ^{2} \theta \tag{2}\\
\sin (2 \theta) & =2 \sin \theta \cos \theta \tag{3}
\end{align*}
$$

Note that identity (2) above can be derived from (1) by dividing both sides of the equation by $\cos ^{2} \theta$.
The general technique of trig substitution is:

- for integrals containing $\sqrt{a^{2}-x^{2}}$, use the substitution $x=a \sin \theta$,
- for integrals with $\sqrt{x^{2}+a^{2}}$, or $x^{2}+a^{2}$ in the denominator, use the substitution $x=a \tan \theta$.

1) Integrals involving $\sqrt{a^{2}-x^{2}}$

Example 1:

Compute $\int \sqrt{9-x^{2}} d x$ using the substitution $x=3 \sin \theta$.
Answer: Letting $x=3 \sin \theta$, we have $d x=3 \cos \theta d \theta$ and

$$
\sqrt{9-x^{2}}=\sqrt{9-9 \sin ^{2} \theta}=\sqrt{9\left(1-\sin ^{2} \theta\right)}=\sqrt{9 \cos ^{2} \theta}=3 \cos \theta
$$

Thus, the integral transforms to

$$
\begin{aligned}
\int 3 \cos \theta \cdot 3 \cos \theta d \theta & =9 \int \cos ^{2} \theta d \theta \\
& =9 \int \frac{1}{2}(1+\cos (2 \theta)) d \theta \quad \text { (identity from Section 7.2) } \\
& =\frac{9}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)+c \\
& =\frac{9}{2}(\theta+\sin \theta \cos \theta)+c \quad \text { (using formula (3)). }
\end{aligned}
$$

To finish the problem, we return to the original variable x. We have $\sin \theta=x / 3$, so $\theta=\sin ^{-1}(x / 3)$. Using a right triangle with one angle equal to θ, we find $\cos \theta=\frac{1}{3} \sqrt{9-x^{2}}$. Hence, the solution is

$$
\frac{9}{2}\left(\sin ^{-1}\left(\frac{x}{3}\right)+\frac{x}{3} \cdot \frac{\sqrt{9-x^{2}}}{3}\right)=\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)+\frac{1}{2} x \sqrt{9-x^{2}}+c .
$$

2) Integrals involving $\sqrt{x^{2}+a^{2}}$ or $x^{2}+a^{2}$

Example 2: Evaluate $\int_{5}^{5 \sqrt{3}} \frac{1}{x\left(x^{2}+25\right)} d x$ using the substitution $x=5 \tan \theta$.
Answer: Letting $x=5 \tan \theta$, we have $d x=5 \sec ^{2} \theta d \theta$ and

$$
x^{2}+25=25 \tan ^{2} \theta+25=25\left(\tan ^{2} \theta+1\right)=25 \sec ^{2} \theta
$$

Moreover, since $\tan \theta=x / 5$, we have $x=5$ implies $\tan \theta=1$, which means $\theta=\pi / 4$, and $x=5 \sqrt{3}$ implies $\tan \theta=\sqrt{3}$ yielding $\theta=\tan ^{-1}(\sqrt{3})=\pi / 3$. Thus, the integral transforms to

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 3} \frac{1}{5 \tan \theta\left(25 \sec ^{2} \theta\right)} \cdot 5 \sec ^{2} \theta d \theta & =\int_{\pi / 4}^{\pi / 3} \frac{1}{25 \tan \theta} d \theta \\
& =\frac{1}{25} \int_{\pi / 4}^{\pi / 3} \frac{\cos \theta}{\sin \theta} d \theta \quad(u \text {-sub with } u=\sin \theta) \\
& =\left.\frac{1}{25} \ln |\sin \theta|\right|_{\pi / 4} ^{\pi / 3} \\
& =\frac{1}{25}(\ln |\sin (\pi / 3)|-\ln |\sin (\pi / 4)|) \\
& =\frac{1}{25}(\ln (\sqrt{3} / 2)-\ln (\sqrt{2} / 2)) \\
& =\frac{1}{25} \ln (\sqrt{3 / 2}) \quad(\ln a-\ln b=\ln (a / b))
\end{aligned}
$$

Exercises: Complete the following on a separate piece(s) of paper.

1. Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ using the substitution $x=2 \sin \theta$.

Check your answer by interpreting the integral as the area under the curve.
2. Evaluate $\int \frac{1}{x\left(x^{2}+4\right)} d x$ using the substitution $x=2 \tan \theta$.
3. Evaluate $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$.
4. Evaluate $\int_{\sqrt{3}}^{3} \frac{1}{x^{2} \sqrt{x^{2}+9}} d x$.

