MATH 134 Calculus 2 with FUNdamentals

Section 7.3: Trigonometric Substitution

This section focuses on integrals involving expressions of the form $\sqrt{a^2 - x^2}$ or $\sqrt{x^2 + a^2}$, where a is a constant. For these types of integrals, the key is to make a **trig substitution** that converts the integral into a simpler form. Then, after computing the integral in the new variable (usually θ), we use a right triangle and SOH-CAH-TOA to convert back into the original variable.

Useful Trig Identities:

$$\cos^2 \theta + \sin^2 \theta = 1 \tag{1}$$

$$1 + \tan^2 \theta = \sec^2 \theta \tag{2}$$

$$\sin(2\theta) = 2\sin\theta\cos\theta \tag{3}$$

Note that identity (2) above can be derived from (1) by dividing both sides of the equation by $\cos^2 \theta$. The general technique of trig substitution is:

- for integrals containing $\sqrt{a^2-x^2}$, use the substitution $x=a\sin\theta$,
- for integrals with $\sqrt{x^2 + a^2}$, or $x^2 + a^2$ in the denominator, use the substitution $x = a \tan \theta$.

1) Integrals involving $\sqrt{a^2 - x^2}$

Example 1:

Compute $\int \sqrt{9-x^2} dx$ using the substitution $x=3\sin\theta$.

Answer: Letting $x = 3\sin\theta$, we have $dx = 3\cos\theta \,d\theta$ and

$$\sqrt{9-x^2} = \sqrt{9-9\sin^2\theta} = \sqrt{9(1-\sin^2\theta)} = \sqrt{9\cos^2\theta} = 3\cos\theta.$$

Thus, the integral transforms to

$$\int 3\cos\theta \cdot 3\cos\theta \ d\theta = 9 \int \cos^2\theta \ d\theta$$

$$= 9 \int \frac{1}{2} (1 + \cos(2\theta)) \ d\theta \qquad \text{(identity from Section 7.2)}$$

$$= \frac{9}{2} \left(\theta + \frac{1}{2}\sin(2\theta)\right) + c$$

$$= \frac{9}{2} (\theta + \sin\theta\cos\theta) + c \qquad \text{(using formula (3))}.$$

To finish the problem, we return to the original variable x. We have $\sin \theta = x/3$, so $\theta = \sin^{-1}(x/3)$. Using a right triangle with one angle equal to θ , we find $\cos \theta = \frac{1}{3}\sqrt{9-x^2}$. Hence, the solution is

$$\frac{9}{2}\left(\sin^{-1}\left(\frac{x}{3}\right) + \frac{x}{3} \cdot \frac{\sqrt{9-x^2}}{3}\right) = \frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) + \frac{1}{2}x\sqrt{9-x^2} + c.$$

2) Integrals involving $\sqrt{x^2 + a^2}$ or $x^2 + a^2$

Example 2: Evaluate $\int_5^{5\sqrt{3}} \frac{1}{x(x^2+25)} dx$ using the substitution $x=5\tan\theta$.

Answer: Letting $x = 5 \tan \theta$, we have $dx = 5 \sec^2 \theta \ d\theta$ and

$$x^2 + 25 = 25 \tan^2 \theta + 25 = 25(\tan^2 \theta + 1) = 25 \sec^2 \theta.$$

Moreover, since $\tan \theta = x/5$, we have x = 5 implies $\tan \theta = 1$, which means $\theta = \pi/4$, and $x = 5\sqrt{3}$ implies $\tan \theta = \sqrt{3}$ yielding $\theta = \tan^{-1}(\sqrt{3}) = \pi/3$. Thus, the integral transforms to

$$\int_{\pi/4}^{\pi/3} \frac{1}{5 \tan \theta (25 \sec^2 \theta)} \cdot 5 \sec^2 \theta \ d\theta = \int_{\pi/4}^{\pi/3} \frac{1}{25 \tan \theta} \ d\theta
= \frac{1}{25} \int_{\pi/4}^{\pi/3} \frac{\cos \theta}{\sin \theta} \ d\theta \qquad (u\text{-sub with } u = \sin \theta)
= \frac{1}{25} \ln|\sin \theta||_{\pi/4}^{\pi/3}
= \frac{1}{25} (\ln|\sin(\pi/3)| - \ln|\sin(\pi/4)|)
= \frac{1}{25} \left(\ln(\sqrt{3}/2) - \ln(\sqrt{2}/2)\right)
= \frac{1}{25} \ln(\sqrt{3}/2) \qquad (\ln a - \ln b = \ln(a/b)).$$

Exercises: Complete the following on a **separate** piece(s) of paper.

1. Evaluate $\int_0^2 \sqrt{4-x^2} \, dx$ using the substitution $x=2\sin\theta$.

Check your answer by interpreting the integral as the area under the curve.

- 2. Evaluate $\int \frac{1}{x(x^2+4)} dx$ using the substitution $x=2\tan\theta$.
- 3. Evaluate $\int \frac{x^2}{\sqrt{16-x^2}} dx.$
- 4. Evaluate $\int_{\sqrt{3}}^{3} \frac{1}{x^2 \sqrt{x^2 + 9}} dx.$