MATH 134 Calculus 2 with FUNdamentals Section 8.1: Arc Length

 Solutions

 Solutions}

Exercises: For \#1-2, compute the arc length of the graph of each function over the given interval.

1. $f(x)=x^{3 / 2}$ from $x=0$ to $x=4$.

Answer: $\frac{8}{27}(10 \sqrt{10}-1)$
We have $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$, so that $1+\left(f^{\prime}(x)\right)^{2}=1+\frac{9}{4} x$. The arc length integral can be computed with a u-substitution with $u=1+\frac{9}{4} x$. We have

$$
\begin{aligned}
L & =\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x \\
& =\int_{1}^{10} u^{1 / 2} \cdot \frac{4}{9} d u \quad\left(u=1+\frac{9}{4} x, d u=\frac{9}{4} d x, d x=\frac{4}{9} d u\right) \\
& =\frac{4}{9} \int_{1}^{10} u^{1 / 2} d u \\
& =\left.\frac{4}{9} \cdot \frac{2}{3} u^{3 / 2}\right|_{1} ^{10} \\
& =\frac{8}{27}(10 \sqrt{10}-1)
\end{aligned}
$$

2. $f(x)=x^{3}+\frac{1}{12} x^{-1}$ from $x=1$ to $x=2$.

Answer: $\frac{169}{24}$.
The key to this problem is to write $1+\left[f^{\prime}(x)\right]^{2}$ as a perfect square. We compute $f^{\prime}(x)=$ $3 x^{2}-\frac{1}{12} x^{-2}$. Then,

$$
\begin{aligned}
1+\left[f^{\prime}(x)\right]^{2} & =1+9 x^{4}+\frac{1}{144} x^{-4}-\frac{1}{2} \\
& =9 x^{4}+\frac{1}{2}+\frac{1}{144} x^{-4} \\
& =\left(3 x^{2}+\frac{1}{12} x^{-2}\right)^{2}
\end{aligned}
$$

This implies that the arc length is

$$
\begin{aligned}
\int_{1}^{2} \sqrt{\left(3 x^{2}+\frac{1}{12} x^{-2}\right)^{2}} d x & =\int_{1}^{2} 3 x^{2}+\frac{1}{12} x^{-2} d x \\
& =x^{3}-\left.\frac{1}{12} x^{-1}\right|_{1} ^{2} \\
& =8-\frac{1}{24}-\left(1-\frac{1}{12}\right) \\
& =7+\frac{1}{24} \\
& =\frac{169}{24}
\end{aligned}
$$

3. Verify that the circumference of the unit circle is 2π by computing the arc length of the curve $y=\sqrt{1-x^{2}}$ from $x=-1$ to $x=1$.

Answer: First write the function as $y=\left(1-x^{2}\right)^{1 / 2}$. Using the chain rule, we have $\frac{d y}{d x}=$ $\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot-2 x=-x\left(1-x^{2}\right)^{-1 / 2}$. Then,

$$
\begin{aligned}
1+\left[f^{\prime}(x)\right]^{2} & =1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2} \\
& =1+\frac{x^{2}}{1-x^{2}} \\
& =\frac{1}{1-x^{2}} .
\end{aligned}
$$

This implies that the arc length is

$$
\begin{aligned}
\int_{-1}^{1} \sqrt{\frac{1}{1-x^{2}}} d x & =\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x \\
& =\left.\sin ^{-1}(x)\right|_{-1} ^{1} \\
& =\sin ^{-1}(1)-\sin ^{-1}(-1) \\
& =\frac{\pi}{2}-\left(-\frac{\pi}{2}\right) \\
& =\pi .
\end{aligned}
$$

This shows that the length of the top half of the unit circle is π, which implies that the full unit circle has a length (i.e., circumference) of 2π.
Note that the integral above is technically improper because the integrand is undefined at -1 and 1. However, using the standard limit definition (replacing the "bad" points with b) will lead to the same result since $\sin ^{-1}(x)$ is left- and right-continuous at $x=1$ and $x=-1$, respectively.

