MATH 134 Calculus 2 with FUNdamentals
 Exam \#1 SOLUTIONS
 February 20, 2020
 Prof. Gareth Roberts

1. Let $g(x)=\sqrt{x}$ over the interval $1 \leq x \leq 4$.
(a) Approximate the area (to three decimal places) under the graph of $g(x)=\sqrt{x}$ from $1 \leq x \leq 4$ by using three equal subintervals and left endpoints (i.e., calculate the left-hand sum L_{3}). (5 pts .)
Answer: The width of each rectangle is $\Delta x=(4-1) / 3=1$. Evaluating g at the left endpoints of each subinterval gives an estimated area of

$$
A=1(g(1)+g(2)+g(3))=1+\sqrt{2}+\sqrt{3} \approx 4.146
$$

(b) Sketch a graph of $g(x)$ over $[1,4]$ and draw the three rectangles used to compute L_{3}. Based on your figure, is your estimate in part (a) an underestimate, an overestimate, or can this not be determined? (5 pts.)
Answer: The value in part (a) is an underestimate because g is an increasing function (see the figure below). This can also be seen by computing the actual area (part (d)), since $4.146<14 / 3=4 . \overline{6}$.

(c) Approximate the area (to three decimal places) under the graph of $g(x)=\sqrt{x}$ from $1 \leq x \leq 4$ by using three equal subintervals and midpoints (i.e., calculate the midpoint sum M_{3}). (5 pts.)
Answer: The width of each rectangle is still 1. Evaluating g at the midpoints of each subinterval gives an estimated area of

$$
A=1(g(1.5)+g(2.5)+g(3.5))=(\sqrt{1.5}+\sqrt{2.5}+\sqrt{3.5}) \approx 4.677
$$

(d) Use a definite integral to compute the exact area under the graph of $g(x)=\sqrt{x}$ from $1 \leq x \leq 4$. (5 pts.)

Answer: $A=\int_{1}^{4} \sqrt{x} d x=\int_{1}^{4} x^{1 / 2} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{1} ^{4}=\frac{2}{3}\left(4^{3 / 2}-1^{3 / 2}\right)=\frac{2}{3}(8-1)=\frac{14}{3}$.
2. Define $A(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 5$, where the graph of $f(t)$ is shown below.

(a) Find $A(0)$ and $A(1)$. (4 pts.)

Answer: The function $A(x)$ represents the area under the curve from 0 to x. Thus $A(0)=0$ and $A(1)=\frac{1}{2} \cdot 1 \cdot 4=2$.
(b) Find each of the following quantities, if they exist. (8 pts.)

$$
\begin{array}{ll}
A^{\prime}(1)=\underline{0} & A^{\prime \prime}(1)=\text { D.N.E. } \\
A^{\prime}(2)=\underline{1} & A^{\prime \prime}(2)=\underline{0}
\end{array}
$$

Answer: Using FTC, part 2, we have that $A^{\prime}(x)=f(x)$ and thus $A^{\prime}(1)=f(1)=0$ and $A^{\prime}(2)=f(2)=1$, as can be seen from the graph. Then, $A^{\prime}(x)=f(x)$ implies that $A^{\prime \prime}(x)=f^{\prime}(x)$ (differentiate both sides with respect to $\left.x\right)$. This means that $A^{\prime \prime}(1)=f^{\prime}(1)$ does not exist (corner at $t=1$) and $A^{\prime \prime}(2)=f^{\prime}(2)=0$ (horizontal tangent line at $t=2$.)
(c) On what interval(s) is $A(x)$ increasing? (3 pts.)

Answer: Since $A^{\prime}(x)=f(x)$ and since a function is increasing whenever its derivative is positive, we see that A is increasing whenever $f>0$ (graph above the axis), or when $0<x<1$ or $1<x<3$.
(d) On what interval(s) is $A(x)$ concave down? (3 pts.)

Answer: Since $A^{\prime \prime}(x)=f^{\prime}(x)$ and since a function is concave down whenever its second derivative is negative, we see that A is concave down whenever $f^{\prime}<0$ (negative slope), or when $0<x<1$ or $2<x<4$.
3. Evaluate each of the following integrals. Note that part (d) is a definite integral. (22 pts.)
(a) $\int e^{3 x}+\sec ^{2} x-\frac{3}{x^{2}} d x$

Answer: Computing each antiderivative separately using the appropriate formula, we obtain

$$
\frac{1}{3} e^{3 x}+\tan x+3 x^{-1}+c
$$

where the last term follows from the power rule applied to $-3 x^{-2}$.
(b) $\int \frac{2 t+1}{4 t^{2}+4 t+3} d t$

Answer: This is a u-substitution with $u=4 t^{2}+4 t+3$. Then $d u=8 t+4 d t=4(2 t+1) d t$. This gives $d u / 4=2 t+1 d t$, which transforms the integral into

$$
\int \frac{1}{u} \cdot \frac{d u}{4}=\frac{1}{4} \ln |u|+c .
$$

Converting back into the original variable gives

$$
\frac{1}{4} \ln \left|4 t^{2}+4 t+3\right|+c
$$

(c) $\int x e^{-x^{2}} d x$

Answer: Letting $u=-x^{2}$, we have $d u=-2 x d x$ or $\frac{d u}{-2}=x d x$. The integral becomes

$$
\int e^{u} \cdot \frac{d u}{-2}=-\frac{1}{2} e^{u}+c
$$

Converting back into the original variable gives $-\frac{1}{2} e^{-x^{2}}+c$.
(d) $\int_{0}^{\pi / 2} \cos ^{4} x \sin x d x$

Answer: This is a u-substitution with $u=\cos x$. Then $d u=-\sin x d x$ or $-d u=$ $\sin x d x$. Also, if $x=0$, then $u=\cos (0)=1$ and if $x=\pi / 2$, then $u=\cos (\pi / 2)=0$. In the u-variable, the integral becomes

$$
-\int_{1}^{0} u^{4} d u=\int_{0}^{1} u^{4} d u=\left.\frac{u^{5}}{5}\right|_{0} ^{1}=\frac{1}{5}
$$

4. Suppose that the acceleration of a particle traveling along a line is given by

$$
a(t)=3 \sin (3 t)+8 t .
$$

If the initial velocity is $v(0)=5$ and the initial position is $s(0)=-2$, find the position function $s(t)$. (10 pts.)

Answer:

To find $v(t)$ we compute the antiderivative of the acceleration. This is trickier than it looks. We need to use the fact that

$$
\int \sin (k t) d t=-\frac{1}{k} \cos (k t)+c
$$

which is true for any constant k (check it with the chain rule.) Thus, we have that

$$
v(t)=3 \cdot-\frac{1}{3} \cos (3 t)+4 t^{2}+c=-\cos (3 t)+4 t^{2}+c .
$$

Since $v(0)=5$, we find that $5=-\cos (0)+0+c$ or $5=-1+c$, which implies that $c=6$. Thus,

$$
v(t)=-\cos (3 t)+4 t^{2}+6
$$

Next, we compute another antiderivative to find the position function $s(t)$. This time we use the formula

$$
\int \cos (k t) d t=\frac{1}{k} \sin (k t)+c
$$

and obtain

$$
s(t)=-\frac{1}{3} \sin (3 t)+\frac{4}{3} t^{3}+6 t+c
$$

Finally, using the initial position $s(0)=-2$, we have that $-2=-(1 / 3) \sin (0)+0+0+c$, which implies that $c=-2$. The final answer is

$$
s(t)=-\frac{1}{3} \sin (3 t)+\frac{4}{3} t^{3}+6 t-2
$$

5. Evaluate $\int_{0}^{2 / 3} \frac{3}{9 x^{2}+4} d x$ using the substitution $u=\frac{3}{2} x$. Give the exact answer (no decimals). (10 pts.)

Answer: Letting $u=\frac{3}{2} x$, we have $x=\frac{2}{3} u$ and $d x=\frac{2}{3} d u$. Then,

$$
9 x^{2}+4=9\left(\frac{2}{3} u\right)^{2}+4=9 \cdot \frac{4}{9} u^{2}+4=4 u^{2}+4=4\left(u^{2}+1\right) .
$$

Also, if $x=0$, then $u=0$, and if $x=2 / 3$, then $u=\frac{3}{2} \cdot \frac{2}{3}=1$.
Applying the above calculations, the integral transforms to

$$
\int_{0}^{1} \frac{3}{4\left(u^{2}+1\right)} \cdot \frac{2}{3} d u=\frac{1}{2} \int_{0}^{1} \frac{1}{u^{2}+1} d u=\left.\frac{1}{2} \tan ^{-1} u\right|_{0} ^{1}=\frac{1}{2}\left(\tan ^{-1}(1)-\tan ^{-1}(0)\right)=\frac{\pi}{8}
$$

since $\tan ^{-1}(1)=\pi / 4$ and $\tan ^{-1}(0)=0$.

6. Calculus Potpourri: (20 pts.)

(a) Suppose that $\int_{0}^{4} f(x) d x=-3$ and $\int_{0}^{7} f(x) d x=6$, and that $f(x)$ is an even continuous function. Find the value of $\int_{-7}^{-4} \pi f(x) d x$.

Answer: First, using linearity, we have

$$
\int_{0}^{7} f(x) d x=\int_{0}^{4} f(x) d x+\int_{4}^{7} f(x) d x
$$

which implies

$$
6=-3+\int_{4}^{7} f(x) d x \quad \text { and thus } \quad \int_{4}^{7} f(x) d x=9
$$

Since f is an even function, it is symmetric with respect to the y-axis. This means the integral of f over an interval on one side of the y-axis is equivalent to the integral of f over the reflection of that interval onto the other side of the axis. Thus, we have

$$
\int_{-7}^{-4} f(x) d x=9 \quad \Longrightarrow \quad \int_{-7}^{-4} \pi f(x) d x=9 \pi
$$

since constants pull out of integrals.
(b) A particle travels in a straight line with velocity $v(t)=4-t^{2} \mathrm{~m} / \mathrm{s}$. Find the total distance traveled by the particle over the time interval $[0,3]$.

Answer: To find the total distance traveled, we compute $\int_{0}^{3}|v(t)| d t=\int_{0}^{3}\left|4-t^{2}\right| d t$. In order to evaluate this integral, we need to determine where $v(t)$ is positive and where it is negative. To do this we solve $v(t)=0$ or $4-t^{2}=0$. This gives $t^{2}=4$ or $t= \pm 2$. Since the time interval is $[0,3]$, we disregard $t=-2$. The graph of $4-t^{2}$ is a parabola opening down with vertex at $(0,4)$, so v is positive on $0 \leq t<2$ and negative for $2<t \leq 3$. Therefore,

$$
\begin{aligned}
\int_{0}^{3}\left|4-t^{2}\right| d t & =\int_{0}^{2} 4-t^{2} d t-\int_{2}^{3} 4-t^{2} d t \\
& =4 t-\left.\frac{t^{3}}{3}\right|_{0} ^{2}-\left(4 t-\left.\frac{t^{3}}{3}\right|_{2} ^{3}\right) \\
& =8-\frac{8}{3}-\left(12-9-\left(8-\frac{8}{3}\right)\right) \\
& =\frac{16}{3}-\left(3-\frac{16}{3}\right) \\
& =\frac{32}{3}-3 \\
& =\frac{23}{3} \mathrm{~m}
\end{aligned}
$$

(c) Find and simplify $\frac{d}{d x}\left(\int_{x^{3}}^{1} \ln \left(t^{3}+2020\right) d t\right)$.

Answer: This is a problem using FTC, part 2 and the chain rule. First flip the limits of integration and then apply FTC, part 2 as well as the chain rule. The solution is

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{x^{3}}^{1} \ln \left(t^{3}+2020\right) d t\right) & =-\frac{d}{d x}\left(\int_{1}^{x^{3}} \ln \left(t^{3}+2020\right) d t\right) \\
& =-\ln \left(\left(x^{3}\right)^{3}+2020\right) \cdot \frac{d}{d x}\left(x^{3}\right) \\
& =-3 x^{2} \ln \left(x^{9}+2020\right)
\end{aligned}
$$

