MATH 134 Calculus 2 with FUNdamentals

Exam \#2 SOLUTIONS April 3, 2020 Prof. Gareth Roberts

1. Let R be the region enclosed by the curves $y=x^{2}$ and $y=3-2 x$. (12 pts.)
(a) Sketch the region R in the $x y$-plane.

Answer:

The curves are a standard parabola and a line of slope -2 and y-intercept of 3 . To find where the two curves intersect, we solve $x^{2}=3-2 x$ or $x^{2}+2 x-3=0$. This equations factors as $(x+3)(x-1)=0$, which means $x=-3$ or $x=1$. Plugging back into either equation, we see that the line and parabola intersect at $(1,1)$ and $(-3,9)$.
(b) Find the area of the region R.

Answer: 32/3.
We find the area of R by integrating the difference of the top function (line) and the bottom one (parabola) from $x=-3$ to $x=1$. We compute

$$
\begin{aligned}
A & =\int_{-3}^{1} 3-2 x-x^{2} d x \\
& =3 x-x^{2}-\left.\frac{x^{3}}{3}\right|_{-3} ^{1} \\
& =\left(3-1-\frac{1}{3}\right)-(-9-9+9) \\
& =\frac{5}{3}+9 \\
& =\frac{32}{3} .
\end{aligned}
$$

2. Solids of Revolution: Let A be the region in the first quadrant enclosed by the graphs of $x=0, y=2$, and $y=6-x^{2}$. (20 pts.)
(a) Carefully sketch the region A in the $x y$-plane.

Answer:

The curves are a parabola opening downwards with vertex at $(0,6)$ and a horizontal line. To find where the two curves intersect, we solve $6-x^{2}=2$ or $x^{2}=4$. This means $x=2$ since A is in the first quadrant. The curves intersect at $(2,2)$.
(b) Find the volume of the solid of revolution obtained by rotating A about the x-axis. Give the exact answer (no decimals). Extra credit for drawing a good picture of the solid!

Answer: 192 $/$ /5
We use the washer method since there is a gap between the region and the axis of rotation. The outer radius is $6-x^{2}$ (distance between the parabola and the x-axis) and the inner radius is 2 (distance between the horizontal line and the x-axis). See the above figure,
generated using desmos.com. Thus, the volume is given by

$$
\begin{aligned}
\pi \int_{0}^{2}\left(6-x^{2}\right)^{2}-2^{2} d x & =\pi \int_{0}^{2} 36-12 x^{2}+x^{4}-4 d x \\
& =\pi \int_{0}^{2} 32-12 x^{2}+x^{4} d x \\
& =\pi\left(32 x-4 x^{3}+\left.\frac{x^{5}}{5}\right|_{0} ^{2}\right) \\
& =\pi\left(64-32+\frac{32}{5}\right)=\frac{192 \pi}{5}
\end{aligned}
$$

(c) Find the volume of the solid of revolution obtained by rotating A about the y-axis. Give the exact answer (no decimals).

Answer: 8π
We use the disc method because there is no gap between the region and the axis of rotation. We integrate with respect to y because we are rotating about a vertical axis (circular cross sections are perpendicular to the y-axis). Since $y=6-x^{2}$, we have $x^{2}=6-y$ or $x=\sqrt{6-y}$. This is the radius of each cross section as a function of y, where $2 \leq y \leq 6$. Thus, the volume is given by

$$
\begin{aligned}
\int_{2}^{6} \pi(\sqrt{6-y})^{2} d y & =\pi \int_{2}^{6} 6-y d y \\
& =\pi\left(6 y-\left.\frac{y^{2}}{2}\right|_{2} ^{6}\right) \\
& =\pi(36-18-(12-2)) \\
& =\pi(18-10) \\
& =8 \pi
\end{aligned}
$$

3. Evaluate the following integrals using the appropriate method or combination of methods. (24 pts.)
(a) $\int \frac{4 x+15}{x^{2}-5 x} d x$

Answer: The denominator factors as $x(x-5)$ so this suggests partial fractions as an appropriate technique. We seek constants A and B such that

$$
\frac{4 x+15}{x(x-5)}=\frac{A}{x}+\frac{B}{x-5}
$$

Multiplying through by the LCD $x(x-5)$ gives

$$
4 x+15=A(x-5)+B x .
$$

Next we plug in the roots $x=0$ and $x=5$. Using $x=0$ in the previous equation, we find $15=-5 A$ or $A=-3$. Likewise, setting $x=5$ in the previous equation gives $35=5 B$ or $B=7$. Thus, the integral transforms into

$$
\int \frac{-3}{x}+\frac{7}{x-5} d x=-3 \ln |x|+7 \ln |x-5|+c
$$

(b) $\int t^{6} \ln t d t$

Answer: Use integration by parts. Let $u=\ln t$ and $d v=t^{6} d t$. This leads to $d u=\frac{1}{t} d t$ and $v=\frac{1}{7} t^{7}$. The integration by parts formula then yields

$$
\begin{aligned}
\int t^{6} \ln t d t & =\frac{1}{7} t^{7} \ln t-\int \frac{1}{7} t^{7} \cdot \frac{1}{t} d t \\
& =\frac{1}{7} t^{7} \ln t-\frac{1}{7} \int t^{6} d t \\
& =\frac{1}{7} t^{7} \ln t-\frac{1}{49} t^{7}+c \\
& =\frac{t^{7}}{49}(7 \ln t-1)+c
\end{aligned}
$$

(c) $\int \cos ^{3} x \sin ^{2} x d x$

Answer: The first step is to factor out $\cos x$ and then use the identity $\cos ^{2} x=1-\sin ^{2} x$. We have

$$
\begin{aligned}
\int \cos ^{3} x \sin ^{2} x d x & =\int \cos x \cdot \cos ^{2} x \cdot \sin ^{2} x d x \\
& =\int \cos x \cdot\left(1-\sin ^{2} x\right) \sin ^{2} x d x \\
& =\int\left(1-u^{2}\right) \cdot u^{2} d u \quad \text { using } u=\sin x, d u=\cos x d x \\
& =\int u^{2}-u^{4}+c \\
& =\frac{u^{3}}{3}-\frac{u^{5}}{5}+c \\
& =\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+c
\end{aligned}
$$

4. Evaluate the integral $\int \frac{x^{2}}{x^{2}+9} d x$ using the trig substitution $x=3 \tan \theta$.

Hint: You will need to use the identity $\tan ^{2} \theta+1=\sec ^{2} \theta$ twice. (12 pts.)

Answer: Letting $x=3 \tan \theta$, we have $d x=3 \sec ^{2} \theta d \theta$ and $x^{2}=9 \tan ^{2} \theta$. Also, using the trig identity $\tan ^{2} \theta+1=\sec ^{2} \theta$, the denominator simplifies as

$$
x^{2}+9=9 \tan ^{2} \theta+9=9\left(\tan ^{2} \theta+1\right)=9 \sec ^{2} \theta .
$$

We find

$$
\begin{aligned}
\int \frac{x^{2}}{x^{2}+9} d x & =\int \frac{9 \tan ^{2} \theta}{9 \sec ^{2} \theta} \cdot 3 \sec ^{2} \theta d \theta \\
& =3 \int \tan ^{2} \theta d \theta \\
& =3 \int \sec ^{2} \theta-1 d \theta \quad \text { (using } \tan ^{2} \theta+1=\sec ^{2} \theta \text { again) } \\
& =3(\tan \theta-\theta)+c \\
& =3 \tan \theta-3 \theta+c \\
& =x-3 \tan ^{-1}\left(\frac{x}{3}\right)+c
\end{aligned}
$$

where the final step follows from $x=3 \tan \theta$ and $\tan \theta=x / 3$.
5. Consider the two integrals below. One of these can be computed using a u-substitution while the other requires trig substitution. Determine which is which and evaluate both integrals. (16 pts.)
(a) $\int \frac{1}{\sqrt{16-x^{2}}} d x$
(b) $\int \frac{x}{\sqrt{16-x^{2}}} d x$

Answer: Integral (a) can be done using trig sub, while integral (b) can be evaluated using a u-sub.
For (a), let $x=4 \sin \theta$. Then we have $d x=4 \cos \theta d \theta$ and $x^{2}=16 \sin ^{2} \theta$. Also, using the fundamental trig identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, the denominator simplifies to

$$
\sqrt{16-16 \sin ^{2} \theta}=\sqrt{16\left(1-\sin ^{2} \theta\right)}=\sqrt{16 \cos ^{2} \theta}=4 \cos \theta
$$

We find

$$
\begin{aligned}
\int \frac{1}{\sqrt{16-x^{2}}} d x & =\int \frac{1}{4 \cos \theta} \cdot 4 \cos \theta d \theta \\
& =\int 1 d \theta \\
& =\theta+c \\
& =\sin ^{-1}\left(\frac{x}{4}\right)+c
\end{aligned}
$$

where the final step follows from $x=4 \sin \theta$ and thus $\sin \theta=x / 4$.

Integral (b) can be done using the u-substitution $u=16-x^{2}$. Then $d u=-2 x d x$ or $x d x=-\frac{1}{2} d u$. We compute

$$
\begin{aligned}
\int \frac{x}{\sqrt{16-x^{2}}} d x & =\int \frac{1}{\sqrt{u}} \cdot-\frac{1}{2} d u \\
& =-\frac{1}{2} \int u^{-1 / 2} d u \\
& =-\frac{1}{2} \cdot 2 u^{1 / 2}+c \\
& =-\sqrt{u}+c \\
& =-\sqrt{16-x^{2}}+c
\end{aligned}
$$

6. Calculus Potpourri: (16 pts.)
(a) Find the average value of $f(x)=\sin ^{2} x$ over the interval $[0, \pi]$.

Answer: $1 / 2$. The average value of $f(x)$ over $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$, so we need to calculate $\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2} x d x$. The average value is

$$
\begin{aligned}
\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2} x d x & =\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{2}(1-\cos (2 x)) d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} 1-\cos (2 x) d x \\
& =\frac{1}{2 \pi}\left(x-\left.\frac{1}{2} \sin (2 x)\right|_{0} ^{\pi}\right) \\
& =\frac{1}{2 \pi}\left(\pi-\frac{1}{2} \sin (2 \pi)-0+\frac{1}{2} \sin (0)\right) \\
& =\frac{1}{2 \pi}(\pi-0) \\
& =\frac{1}{2}
\end{aligned}
$$

(b) The population of Vivitown has a radial density function of $\rho(r)=15 e^{-2 r}$, where r is the distance (in kilometers) from the city center and ρ is measured in thousands of people per square kilometer. Calculate the number of people living within 5 kilometers of the center of Vivitown (round to the nearest whole number).

Answer: 23,550 people live within 5 kilometers of the center of Vivitown.

The population is found by integrating the density function times $2 \pi r$ over the interval $[0,5]$. The integral can be computed using integration by parts with $u=r$ and $d v=$
$e^{-2 r} d r$. Then $d u=d r$ and $v=-\frac{1}{2} e^{-2 r}$. We have

$$
\begin{aligned}
\int_{0}^{5} 2 \pi r \cdot 15 e^{-2 r} d r & =30 \pi \int_{0}^{5} r e^{-2 r} d r \\
& =30 \pi\left(-\frac{1}{2} r e^{-2 r}-\int_{0}^{5}-\frac{1}{2} e^{-2 r} d r\right) \\
& =30 \pi\left(-\frac{1}{2} r e^{-2 r}-\left.\frac{1}{4} e^{-2 r}\right|_{0} ^{5}\right) \\
& =30 \pi\left(-\frac{5}{2} e^{-10}-\frac{1}{4} e^{-10}-\left(0-\frac{1}{4}\right)\right) \\
& =30 \pi\left(-\frac{11}{4} e^{-10}+\frac{1}{4}\right) \\
& =\frac{15 \pi}{2}\left(1-11 e^{-10}\right) \\
& \approx 23.5502 \text { thousand people or } 23,550
\end{aligned}
$$

