Inverse Functions: Worksheet for Section 1.5

The Inverse

One of the simplest ways to obtain a new function from an old one is to simply flip the domain and range. So if f(2) = 7, then the new function f^{-1} , called the **inverse of** f, has $f^{-1}(7) = 2$. The function f^{-1} simply maps each element in the range of f back to the element in the domain it came from; it "inverts" f.

However, there will be a problem if an element b in the range has two or more elements in the domain, say a_1 and a_2 , that map to it (i.e., $f(a_1) = f(a_2) = b$). Then, the inverse of b would not be unique (it could be either a_1 or a_2), and f^{-1} would not be a function. To rectify this, we must assume that f is **one-to-one**, that is, each element in the range of f has one and only one pre-image that was sent to it in the domain.

For example, the function $f(x) = x^2$ is not one-to-one because both -2 and 2 are each sent to the same element in the range, f(-2) = f(2) = 4. This function fails the **horizontal line test** and is really two-to-one. However, if we restrict the domain to $x \ge 0$ (think of erasing the left half of the parabola), then f becomes one-to-one and now the inverse is actually a function. You know it already as $f^{-1}(x) = \sqrt{x}$. By definition (i.e., restricting the domain of x^2), \sqrt{x} only spits out non-negative values.

Key Point: The only functions with well-defined inverses are those that are **one-to-one**. They must pass the **horizontal line test**.

Exercise 0.1 Which of the following functions are one-to-one on their full domains? Draw a few examples to illustrate the difference between a one-to-one function and a function that is not one-to-one.

(a.)
$$f(x) = \frac{2}{3}x - 7$$
 b. $F(x) = \frac{2}{3}$ c. $g(x) = (x - 3)^2 + 5$ d. $G(x) = (x - 3)^3 + 5$ e. $h(\theta) = 2\sin(3\theta)$ f. $H(\beta) = -4\tan(\beta)$ g. $i(t) = |t + 1| - 4$ h. $Y(t) = \sqrt{t + 1} - 4$

All other choices Sail the Norvantal line test.

c. $S = \frac{1}{3} \sin(x) + \frac{1}{3} \cos(x) + \frac{1}{3} \cos(x) = (x - 3)^3 + 5$

(3,5) passes

Note that the notation for the inverse of f is not the usual exponent notation. In other words,

$$f^{-1} \neq \frac{1}{f}$$

The choice of -1 as the exponent is mathematical shorthand for **inverse**. Don't confuse this!

Based on the definition of the inverse of a function, the following formulas should make sense:

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$. (1)

Simply put, the inverse of f reverses what f does to x. Likewise, f reverses the action of f^{-1} , that is, the inverse of f^{-1} is just f. Note that the **domain of** f^{-1} equals the range of f, and vice-versa.

Graphically, if (x, y) is a point on the graph of f, then (y, x) is a point on the graph of f^{-1} . Thus, to obtain the graph of f^{-1} from the graph of f (or vice versa), just reflect the graph of f about the line y = x. This is also how one obtains an analytic formula for the inverse of a function: interchange the variables x and y and solve for y.

Exercise 0.2 Find the inverse of the function $f(x) = 1 + \sqrt{2+3x}$. What should the domain of f^{-1} be in order to have f as its inverse?

Inverse Trig Functions

$$y = 1 + \sqrt{3+3x}. \quad \text{Switch } \times \text{ and } y \quad \text{and } \text{ solve for } y.$$

$$x = 1 + \sqrt{3+3y} = 1 \quad \text{Switch } \times \text{ and } y \quad \text{and } \text{ solve for } y.$$

$$x = 1 + \sqrt{3+3y} = 1 \quad \text{Switch } \times \text{ and } y \quad \text{and } \text{ solve for } y.$$

$$x = 1 + \sqrt{3+3y} = 1 \quad \text{Switch } \times \text{ and } y \quad \text{and } y \quad \text{and } \text{ solve for } y.$$

$$y = (x-1)^{3} - 3 \quad \text{Switch } \times \text{ and } y \quad \text{and } y \quad \text{and$$

The key to defining the inverse trig functions is to restrict the domains of the original trig functions in order to ensure that they are one-to-one. For example, the sine function is one-to-one on the domain $-\pi/2 \le \theta \le \pi/2$ (check the graph). By making this restriction, we then **define** the range of the inverse sine function (also called the **arcsine function**) to be $[-\pi/2, \pi/2]$. The domain of the inverse sine function is [-1, 1] because this is precisely the range of the sine function.

Key Point: The inverse sine function, denoted $\sin^{-1}(x)$, inputs numbers between -1 and 1 and outputs angles between $-\pi/2$ and $\pi/2$. Thus, $\theta = \sin^{-1}(x)$ if and only if $\sin(\theta) = x$. (Go backwards!)

The domains and ranges of the other inverse trig functions are given below:

- $\cos^{-1}(x)$: Domain: [-1,1] Range: $[0,\pi]$
- $\tan^{-1}(x)$: Domain: $(-\infty, \infty)$ Range: $(-\pi/2, \pi/2)$
- $\cot^{-1}(x)$: Domain: $(-\infty, \infty)$ Range: $(0, \pi)$
- $\sec^{-1}(x)$: Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[0, \pi/2) \cup (\pi/2, \pi]$
- $\csc^{-1}(x)$: Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[-\pi/2, 0) \cup (0, \pi/2]$

Exercise 0.3 Evaluate each of the following without using a calculator:

a.
$$\sin^{-1}(1/\sqrt{2}) = \sqrt{1/4}$$

b.
$$\sin^{-1}(1) = \sqrt{1/2}$$

a.
$$\sin^{-1}(1/\sqrt{2}) = \frac{\pi/4}{2}$$
 b. $\sin^{-1}(1) = \frac{\pi/3}{2}$ c. $\cos^{-1}(-\sqrt{3}/2) = \frac{5\pi/6}{2}$

d.
$$tan^{-1}(-1) = \frac{-\sqrt{1}}{4}$$
 e. $sec^{-1}(2) = \frac{\sqrt{1}}{3}$ f. $csc^{-1}(-1) = \frac{-\sqrt{1}}{4}$

e.
$$\sec^{-1}(2) = \frac{\pi}{3}$$

f.
$$\csc^{-1}(-1) = \frac{-\sqrt{1}}{2}$$

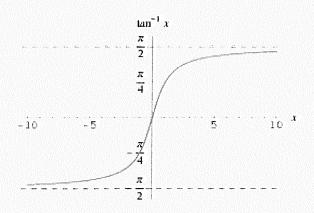
5. Solve
$$\csc Q = -1$$
 or $\frac{1}{\sin Q} = -1$ with $-\frac{\pi}{3} \angle Q \angle \frac{\pi}{3} \angle Q$.
 $\Rightarrow \sin Q = -1 \Rightarrow Q = -\frac{\pi}{3}$

Exercise 0.4 Explain why $\pi/2$ must be excluded from the range of $\sec^{-1}(x)$. In other words, why does the equation $\sec^{-1}(x) = \pi/2$ have no solution?

Is
$$\sec^{-1}(x) = \overline{u}/2$$
, then $\sec^{-1}(x) = x$.
But $\sec^{-1}(x) = \frac{1}{2} =$

Exercise 0.5 Explain why $\cos^{-1}(\cos(17\pi)) = \pi$ and not 17π . What is $\sin^{-1}(\sin(11\pi/3))$?

$$\cos^2(\cos 17\pi) = \pi$$
 because the output of $\cos^2 x$ is always between 0 and π , $\sin^2(\sin \frac{11\pi}{3}) = -\frac{\pi}{3}$ because $-\frac{\pi}{3}$ and $\frac{\pi}{3}$



are the same angle on the unit circle and -54-57

Figure 1: The graph of the inverse tangent function $y = \tan^{-1} x$ is cool. It maps the entire real line one-to-one and onto the open interval $(-\pi/2, \pi/2)$. Note the horizontal asymptotes at $y = -\pi/2$ and $y = \pi/2$.