MATH 135-08, 135-09 Calculus 1, Fall 2017
 Evaluating Limits Algebraically: Worksheet for Section 2.5

If a function is continuous at a point, then the limit of the function is easily found by simple substitution. For instance, $\lim _{x \rightarrow 4} x^{2}-3=4^{2}-3=13$. Otherwise, we may use a graph to try and discern the limit or perform numerical calculations (plug in values really, really close to the point $x=a)$ to find the limit of the function as x approaches a.

This section is concerned with a new technique, namely, using algebra to calculate limits. Here is a simple example. Consider the problem

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}
$$

The function is clearly not continuous at $x=3$ because the denominator becomes 0 when $x=3$. However, notice that the numerator is also 0 when $x=3$. Thus, our limit has the form $\frac{0}{0}$, which is called an indeterminate form. In this case, there is often some algebra (e.g., factoring) that can be performed to simplify the function and compute the limit by hand.

We have

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3) \cdot(x+3)}=\lim _{x \rightarrow 3} \frac{1}{x+3}=\frac{1}{6} .
$$

The cancellation is valid here because we never reach $x=3$ in the limit, so that $x-3 \neq 0$ and can be cancelled from the top and bottom of the fraction.

Here is a list of indeterminate forms. A limit that takes one of these forms can be anything (hence the name indeterminate), so further work must be done to find the actual value of the limit.

$$
\begin{equation*}
\text { Key indeterminate forms: } \frac{0}{0}, \frac{\infty}{\infty}, \infty \cdot 0, \infty-\infty . \tag{1}
\end{equation*}
$$

Exercise 0.1 Find the value of the limit by first canceling a common factor from the numerator and denominator.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+4 x-12}
$$

Exercise 0.2 If $f(x)=5 x^{2}-3 x$, find the value of $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$. Limits of this form are very important in Calculus.

Exercise 0.3 Find the value of $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{9-x}$. Hint: Multiply top and bottom by the conjugate $\sqrt{x}+3$.

Exercise 0.4 Find the value of $\lim _{\theta \rightarrow \pi / 2} \frac{\tan \theta}{\sec \theta}$.

Exercise 0.5 Find the value of each one-sided limit. Hint: Use the definition of the absolute value function and the property $|a b|=|a||b|$.
(i) $\lim _{x \rightarrow 3^{-}} \frac{|4 x-12|}{x-3}$
(ii) $\lim _{x \rightarrow 3^{+}} \frac{|4 x-12|}{x-3}$

Exercise 0.6 Find the value of $\lim _{t \rightarrow 1} \frac{6}{t^{2}-1}-\frac{3}{t-1}$. Hint: Add the fractions and simplify.

