MATH 135-08, 135-09 Calculus 1, Fall 2017
 Limits and Continuity: Worksheet for Section 2.4

Continuity

Intuitively, a continuous function is one that can be drawn without having to lift up your pencil. Functions that are not continuous have holes, jumps, asymptotes, or places where limits don't exist (e.g., infinite oscillations). The precise mathematical definition involves limits.

Definition 0.1 A function $f(x)$ is continuous at $x=a$ if

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=f(a) \tag{1}
\end{equation*}
$$

For a function to be continuous at the point $x=a$, there are three conditions:

1. $f(a)$ must exist (there must be a function value).
2. The limit of the function as x approaches a must exist, and it must equal a real number (so ∞ or $-\infty$ is not ok).
3. The limit must equal the function value.

Types of Discontinuities

- If the left-hand and right-hand limits at $x=a$ each exist, but are not equal to each other, then f has a jump discontinuity at $x=a$.
- If $\lim _{x \rightarrow a} f(x)$ exists, but does not equal the function value $f(a)$, then f has a removable discontinuity at $x=a$. If we redefine $f(a)$ to be the value of the limit, then the function becomes continuous at $x=a$, and we have "removed" the discontinuity.
- If either of the one sided limits go to ∞ or $-\infty$, then f has an infinite discontinuity at $x=a$.

One-Sided Continuity

A function is left continuous at $x=a$ if the left-hand limit exists and equals the function value $f(a)$. Similarly, it is right continuous at $x=a$ if the right-hand limit exists and equals the function value $f(a)$. In other words,

- The function $f(x)$ is left continuous at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.
- The function $f(x)$ is right continuous at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
- The function $f(x)$ is continuous at $x=a$ if and only if it is both left and right continuous at $x=a$.

Exercise 0.2 Consider the piecewise function $f(x)$ defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
6 & \text { if } x \leq 1 \\
4-x & \text { if } 1<x \leq 4 \\
(x-4)^{2} & \text { if } x>4
\end{array}\right.
$$

(i) Carefully sketch the graph of $f(x)$.
(ii) Describe the type of continuity (left, right, neither, continuous) at $x=1$.
(iii) Describe the type of continuity (left, right, neither, continuous) at $x=4$.
(iv) How would you change the definition of the function over $1<x \leq 4$ (the middle portion) to make it continuous for all real numbers?

Note: Polynomials, rational functions, exponentials, logs, and trig functions are all continuous on their domains. Moreover, the composition of continuous functions is also continuous. For example, the function

$$
g(x)=\sin \left(e^{x^{2}-1}\right)
$$

is continuous since it is the composition of the continuous functions $x^{2}-1, e^{x}$ and $\sin x$. To find limits of continuous functions, we simply evaluate the function at the point in question (i.e, just plug it in!) Thus, since g is continuous at $x=1$, we have

$$
\lim _{x \rightarrow 1} g(x)=g(1)=\sin \left(e^{1-1}\right)=\sin (1)
$$

Exercise 0.3 Use continuity to find the value of each limit.
(i) $\lim _{t \rightarrow 3} \log _{5}[\cos (t-3)+4]$
(ii) $\lim _{x \rightarrow-1} \frac{3^{x}}{\sqrt{x+5}}$.

