MATH 135-08, 135-09 Calculus 1, Fall 2017

Limits at Infinity: Worksheet for Section 2.7

The expression $\lim _{x \rightarrow \infty} f(x)$ means to calculate the function values of f as x gets larger and larger, and see if they approach a limit. As with usual limits, the answer may be a real number $L, \infty,-\infty$, or the limit may not exist. For example,

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

because as x gets larger, the value of x^{2} gets even larger, and is therefore going to ∞. On the other hand, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

because as x gets larger, $1 / x$ gets smaller and smaller. We say that the function $f(x)=1 / x$ has a horizontal asymptote at $y=0$ because the graph of f approaches the horizontal line $y=0$ as x tends to ∞. Horizontal asymptotes may also occur as x approaches $-\infty$ as well.

Note: The graph of a function can cross a horizontal asymptote, but as the values of x becomes larger and larger (or large and negative), the function should be heading closer and closer to the value of the asymptote.

The expression $\lim _{x \rightarrow-\infty} f(x)$ means to calculate the function values of f as x gets larger and larger, but negative. For example, we have

$$
\lim _{x \rightarrow-\infty} x^{2}=\infty, \quad \lim _{x \rightarrow-\infty} x^{3}=-\infty, \quad \text { and } \quad \lim _{x \rightarrow-\infty} e^{x}=0
$$

Exercise 0.1 Evaluate each of the following limits, if they exist.
a. $\lim _{x \rightarrow \infty} e^{2 x}$
b. $\lim _{x \rightarrow \infty} e^{-2 x}$
c. $\lim _{x \rightarrow \infty}-x^{4}+3 x^{2}+7$
d. $\lim _{x \rightarrow \infty} \sin x$
e. $\lim _{x \rightarrow-\infty} 2 x^{2}-3 x^{3}$
f. $\lim _{x \rightarrow \infty} \tan ^{-1} x$
g. $\lim _{x \rightarrow-\infty} \tan ^{-1} x$

Limits of Rational Functions

Consider the following limit: $\lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x-2}{4 x^{2}+7}$. To find it, we divide the top and bottom of the fraction by the highest power in the denominator, which in this case is x^{2}. This gives

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x-2}{4 x^{2}+7}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}+\frac{5 x}{x^{2}}-\frac{2}{x^{2}}}{\frac{4 x^{2}}{x^{2}}+\frac{7}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}-\frac{2}{x^{2}}}{4+\frac{7}{x^{2}}}=\frac{3}{4},
$$

since each remaining fraction in the numerator and denominator is heading to 0 as x tends to ∞. The function has a horizontal asymptote at $y=3 / 4$.

Exercise 0.2 Evaluate $\lim _{x \rightarrow \infty} \frac{6 x^{4}-5 x^{3}+2 x}{4 x^{2}-7 x^{4}+1}$.

Exercise 0.3 Evaluate $\lim _{x \rightarrow \infty} \frac{6 x^{4}-5 x^{3}+2 x}{4 x^{5}-7 x^{4}+1}$.

Exercise 0.4 Evaluate $\lim _{x \rightarrow \infty} \frac{\sqrt{25 x^{4}+10}}{3 x^{2}+1}$. Hint: Ignore the 10 in the numerator. (Why is it ok to do this?)

Exercise 0.5 Evaluate $\lim _{x \rightarrow \infty} \frac{e^{x}+3 e^{-x}}{2 e^{x}-e^{-x}}$. Hint: What is the "highest" power in the denominator? Try dividing top and bottom of the fraction by it.

Exercise 0.6 Evaluate $\lim _{x \rightarrow \infty} \tan ^{-1}\left(\frac{5 x^{3}-2 x^{2}+3}{5 x^{3}+9 x^{2}-3 x+\pi}\right)$.

