MATH 135-08, 135-09 Calculus 1, Fall 2017

Limits at Infinity: Worksheet for Section 2.7

The expression $\lim_{x\to\infty} f(x)$ means to calculate the function values of f as x gets larger and larger, and see if they approach a limit. As with usual limits, the answer may be a real number $L, \infty, -\infty$, or the limit may not exist. For example,

$$\lim_{x \to \infty} x^2 = \infty$$

because as x gets larger, the value of x^2 gets even larger, and is therefore going to ∞ . On the other hand, we have

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

because as x gets larger, 1/x gets smaller and smaller. We say that the function f(x) = 1/x has a **horizontal asymptote** at y = 0 because the graph of f approaches the horizontal line y = 0 as x tends to ∞ . Horizontal asymptotes may also occur as x approaches $-\infty$ as well.

Note: The graph of a function can cross a horizontal asymptote, but as the values of x becomes larger and larger (or large and negative), the function should be heading closer and closer to the value of the asymptote.

The expression $\lim_{x \to -\infty} f(x)$ means to calculate the function values of f as x gets larger and larger, but negative. For example, we have

$$\lim_{x \to -\infty} x^2 = \infty, \quad \lim_{x \to -\infty} x^3 = -\infty, \quad \text{and} \quad \lim_{x \to -\infty} e^x = 0.$$

Exercise 0.1 Evaluate each of the following limits, if they exist.

- **a.** $\lim_{x \to \infty} e^{2x}$
- **b.** $\lim_{x \to \infty} e^{-2x}$
- c. $\lim_{x \to \infty} -x^4 + 3x^2 + 7$
- **d.** $\lim_{x \to \infty} \sin x$
- **e.** $\lim_{x \to -\infty} 2x^2 3x^3$
- f. $\lim_{x \to \infty} \tan^{-1} x$
- g. $\lim_{x \to -\infty} \tan^{-1} x$

Limits of Rational Functions

Consider the following limit: $\lim_{x\to\infty} \frac{3x^2+5x-2}{4x^2+7}$. To find it, we divide the top and bottom of the fraction by the **highest power in the denominator**, which in this case is x^2 . This gives

$$\lim_{x \to \infty} \frac{3x^2 + 5x - 2}{4x^2 + 7} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} + \frac{5x}{x^2} - \frac{2}{x^2}}{\frac{4x^2}{x^2} + \frac{7}{x^2}} = \lim_{x \to \infty} \frac{3 + \frac{5}{x} - \frac{2}{x^2}}{4 + \frac{7}{x^2}} = \frac{3}{4},$$

since each remaining fraction in the numerator and denominator is heading to 0 as x tends to ∞ . The function has a horizontal asymptote at y = 3/4.

Exercise 0.2 Evaluate $\lim_{x \to \infty} \frac{6x^4 - 5x^3 + 2x}{4x^2 - 7x^4 + 1}$.

Exercise 0.3 Evaluate $\lim_{x \to \infty} \frac{6x^4 - 5x^3 + 2x}{4x^5 - 7x^4 + 1}$.

Exercise 0.4 Evaluate $\lim_{x\to\infty} \frac{\sqrt{25x^4+10}}{3x^2+1}$. **Hint:** Ignore the 10 in the numerator. (Why is it ok to do this?)

Exercise 0.5 Evaluate $\lim_{x\to\infty} \frac{e^x + 3e^{-x}}{2e^x - e^{-x}}$. **Hint:** What is the "highest" power in the denominator? Try dividing top and bottom of the fraction by it.

Exercise 0.6 Evaluate
$$\lim_{x \to \infty} \tan^{-1} \left(\frac{5x^3 - 2x^2 + 3}{5x^3 + 9x^2 - 3x + \pi} \right).$$