MATH 135-08, 135-09 Calculus 1, Fall 2017

Trigonometric Limits: Worksheet for Section 2.6

This section focuses on two key limits involving $\sin x$ and $\cos x$ that are important for finding the slope of the tangent line to each function. These limits are proven through an important and intuitive theorem called the **Squeeze Theorem** (discussed previously in Section 2.3).

Theorem 0.1 (The Squeeze Theorem) Suppose that $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at x = a) and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

Then $\lim_{x \to a} g(x) = L.$

The Squeeze Theorem states that if one function is "squeezed" between two others having a common limit, then the inner function takes on the same limit. It is best understood visually (see Figure 2 on p. 89 of the text).

Exercise 0.2 Suppose that g(x) satisfies $\cos x \le g(x) \le x^2 + 1$ for x-values near x = 0. Use the Squeeze Theorem to find $\lim_{x \to 0} g(x)$.

Two important trigonometric limits are

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$
 (1)

These can be checked by using a calculator (set it to radians!) and plugging in values very close to 0. Note that each limit takes the form of $\frac{0}{0}$, an indeterminate form.

To prove the first limit in Equation (1), we use the fact that (see Figure 1)

Figure 1: The graphs of the functions y = 1 (dashed), $y = \sin(x)/x$ (solid), and $y = \cos x$ (dotted).

Since $\lim_{x \to 0} \cos x = 1$ and $\lim_{x \to 0} 1 = 1$, by the Squeeze Theorem, we have that $\lim_{x \to 0} \frac{\sin x}{x} = 1$, as desired.

Exercise 0.3 Using the limit $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, show that $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$. **Hint:** Multiply the top and bottom of $\frac{1 - \cos \theta}{\theta}$ by $1 + \cos \theta$, simplify, and break the fraction into the product of two fractions, one of which is $\frac{\sin \theta}{\theta}$. Then use the fact that the limit of a product is the product of the limits.

Exercise 0.4 Evaluate $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. **Hint:** The limit of the product equals the product of the limits.

Exercise 0.5 Use a calculator to evaluate $\lim_{t\to 0} \frac{\sin(7t)}{t}$. Then verify your answer by making the substitution x = 7t. **Hint:** If t is tending toward 0, and x = 7t, then what is x approaching? Try and rewrite the limit using only the variable x so that the fraction $\frac{\sin x}{x}$ is present.

Exercise 0.6 Evaluate each limit.

(a)
$$\lim_{\theta \to 0} \frac{\sin(9\theta)}{5\theta}$$
 (b) $\lim_{x \to 0} \frac{-4x}{\tan(7x)}$