MATH 135-08, 135-09 Calculus 1, Fall 2017
 Trigonometric Limits: Worksheet for Section 2.6

This section focuses on two key limits involving $\sin x$ and $\cos x$ that are important for finding the slope of the tangent line to each function. These limits are proven through an important and intuitive theorem called the Squeeze Theorem (discussed previously in Section 2.3).

Theorem 0.1 (The Squeeze Theorem) Suppose that $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at $x=a$) and that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

Then $\lim _{x \rightarrow a} g(x)=L$.
The Squeeze Theorem states that if one function is "squeezed" between two others having a common limit, then the inner function takes on the same limit. It is best understood visually (see Figure 2 on p. 89 of the text).

Exercise 0.2 Suppose that $g(x)$ satisfies $\cos x \leq g(x) \leq x^{2}+1$ for x-values near $x=0$. Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} g(x)$.

Two important trigonometric limits are

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 \tag{1}
\end{equation*}
$$

These can be checked by using a calculator (set it to radians!) and plugging in values very close to 0 . Note that each limit takes the form of $\frac{0}{0}$, an indeterminate form.

To prove the first limit in Equation (1), we use the fact that (see Figure 1)

$$
\cos x \leq \frac{\sin x}{x} \leq 1 \quad \text { for }-\pi / 2<x<\pi / 2
$$

Figure 1: The graphs of the functions $y=1$ (dashed), $y=\sin (x) / x$ (solid), and $y=\cos x$ (dotted).
Since $\lim _{x \rightarrow 0} \cos x=1$ and $\lim _{x \rightarrow 0} 1=1$, by the Squeeze Theorem, we have that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, as desired.

Exercise 0.3 Using the limit $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$, show that $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$.
Hint: Multiply the top and bottom of $\frac{1-\cos \theta}{\theta}$ by $1+\cos \theta$, simplify, and break the fraction into the product of two fractions, one of which is $\frac{\sin \theta}{\theta}$. Then use the fact that the limit of a product is the product of the limits.

Exercise 0.4 Evaluate $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}$. Hint: The limit of the product equals the product of the limits.

Exercise 0.5 Use a calculator to evaluate $\lim _{t \rightarrow 0} \frac{\sin (7 t)}{t}$. Then verify your answer by making the substitution $x=7 t$.
Hint: If t is tending toward 0 , and $x=7 t$, then what is x approaching? Try and rewrite the limit using only the variable x so that the fraction $\frac{\sin x}{x}$ is present.

Exercise 0.6 Evaluate each limit.
(a) $\lim _{\theta \rightarrow 0} \frac{\sin (9 \theta)}{5 \theta}$
(b) $\lim _{x \rightarrow 0} \frac{-4 x}{\tan (7 x)}$

