MATH 135-08, 135-09 Calculus 1, Fall 2017
 The Derivative as a Function: Worksheet for Section 3.2

Recall that the derivative of a function at a point gives the slope of the tangent line at that point. In other words, $f^{\prime}(a)$ represents the slope of the tangent line at $x=a$. In this section, we vary the point a, and treat the derivative as a function in its own right, the function $f^{\prime}(x)$. The definition is the same as before, except that now we replace a by the variable x.

Definition 0.1 The derivative function $f^{\prime}(x)$ is given by

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{1}
\end{equation*}
$$

The derivative function inputs the number x and outputs the slope of the tangent line to f at x. Thus, $f^{\prime}(x)$ is essentially a slope function.

Important: Since it is defined in terms of a limit, the derivative may not exist at a given point. If $f^{\prime}(a)$ exists, we say that f is differentiable at $x=a$. In general, $f^{\prime}(a)$ does not exist if f has a corner, cusp, or vertical tangent line at the point $x=a$. For example, if $f(x)=|x|$, then $f^{\prime}(0)$ does not exist because f has a corner at the origin. Similarly, $g^{\prime}(0)$ does not exist for the function $g(x)=\sqrt{|x|}$ because g has a cusp at the origin.

Exercise 0.2 Draw two different functions, $f(x)$ and $g(x)$, each with a point where the derivative does not exist.

Theorem 0.3 If $f(x)$ is differentiable at $x=a$, then it is also continuous there. However, the converse is not true: a function may be continuous at a point, but not differentiable there (e.g., $f(x)=|x|$ is continuous at $x=0$, but not differentiable there).

Leibniz Notation

There are many ways to write the derivative mathematically. One of the most popular is to use the notation introduced by Leibniz. If $y=f(x)$, then another way to write $f^{\prime}(x)$ is $\frac{d y}{d x}$, which is read "the derivative of y with respect to x." This notation is useful for reminding us that the derivative is slope, so that

$$
m \approx \frac{\Delta y}{\Delta x} \quad \text { suggests } \quad f^{\prime}(x)=\frac{d y}{d x}
$$

Technically speaking, $d y$ and $d x$ are examples of differential one-forms, but you can just think of the d as representing the operation of taking the derivative. For example, the symbol $\frac{d}{d x}$ means differentiate (take the derivative) with respect to x. Thus,

$$
\frac{d}{d x}(m x+b)=m
$$

because the derivative of a linear function is just the slope of the line.

Useful Formulas Involving the Derivative

1. $\frac{d}{d x}(c)=0 \quad$ (The derivative of a constant is zero.)
2. $\frac{d}{d x}(m x+b)=m \quad$ (The derivative of a line is its slope.)
3. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for any real number n. (Power Rule)
4. $\frac{d}{d x}(c f(x))=c f^{\prime}(x) \quad$ (Constants pull out.)
5. $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \quad$ and $\quad \frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x) \quad$ (Linearity)
6. $\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ (The derivative of e^{x} is itself.)
7. $\frac{d}{d x}\left(b^{x}\right)=(\ln b) \cdot b^{x} \quad$ (The derivative of an exponential function is a constant times itself.)

Each of the above formulas can be derived using the limit definition of the derivative. For instance, if $f(x)=m x+b$ (a linear function), then we would expect that $f^{\prime}(x)=m$, since the slope of the tangent line is the same as the slope of the line itself, m. In terms of the limit definition, we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{m(x+h)+b-(m x+b)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m x+m h+b-m x-b}{h} \\
& =\lim _{h \rightarrow 0} \frac{m h}{h}=\lim _{h \rightarrow 0} m=m .
\end{aligned}
$$

Similarly, if $g(x)=x^{3}$, then we have

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}=3 x^{2},
\end{aligned}
$$

which verifies the power rule for $n=3$.

Exercise 0.4 Find each of the following derivatives using the power rule.
(a) $\frac{d}{d x}\left(x^{15}\right)$
(b) $\frac{d}{d x}\left(\frac{1}{x^{4}}\right)$
(c) $\frac{d}{d x}(\sqrt{x})$
(d) $\frac{d}{d x}\left(x^{\pi}\right)$

Exercise 0.5 Find $g^{\prime}(x)$ if $g(x)=6 \sqrt{x}-\frac{3}{x^{3}}+5 e^{x}-\pi^{4}$.

Exercise 0.6 If $f(x)=4 \sqrt[3]{x}+\frac{2}{3} x-\frac{8}{x}$, find the equation of the tangent line to f at the point $x=8$.

Exercise 0.7 Using the limit definition of the derivative (Equation (1)), explain why $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.

Exercise 0.8 Given the graph of $f(x)$ below, sketch the graph of the derivative function $f^{\prime}(x)$ on the adjacent plot. Hint: Input x, output slope. Focus on the sign of the derivative first.

Exercise 0.9 The graph below shows three functions: $f(x), g(x)$, and $h(x)$. If $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=h(x)$, identify the graph that represents each function. Explain.

Exercise 0.10 If the graph of $g(t)$ is a parabola, what type of graph will $g^{\prime}(t)$ be? Explain.

Exercise 0.11 If $z=e^{t}+t^{e}$, find $\frac{d z}{d t}$.

