MATH 136-03 Calculus 2, Spring 2019

Section 10.6: Power Series

Solutions

Exercises: Find the radius R and interval of convergence for each of the following power series. Be sure to check the endpoints.

1. $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$

Answer: The center of the series is $c=0$. Let $a_{n}=\frac{x^{n}}{2^{n}}$. We apply the ratio test regarding x as some fixed value. We find

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{x^{n+1}}{2^{n+1}}}{\frac{x^{n}}{2^{n}}}\right|=\left|\frac{x^{n+1}}{2^{n+1}}\right| \cdot\left|\frac{2^{n}}{x^{n}}\right|=\frac{\left|x^{n} \cdot x\right|}{2^{n} \cdot 2} \cdot \frac{2^{n}}{\left|x^{n}\right|}=\frac{|x|}{2} .
$$

Then, since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2}=\frac{|x|}{2}$, we solve $|x| / 2<1$ to find where the power series converges (by the ratio test). This yields $|x|<2$ and thus the radius of convergence is $R=2$. The power series converges for $-2<x<2$ and diverges for $|x|>2$. However, we must check the endpoints $x=2$ and $x=-2$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=0}^{\infty} \frac{(-2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n}
$$

which diverges by the nth term test. Substituting $x=2$ into the original series gives

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=\sum_{n=0}^{\infty} 1
$$

which also diverges by the nth term test. Therefore, the interval of convergence for the power series is $-2<x<2$ or $(-2,2)$.
2. $\sum_{n=1}^{\infty}(x-1)^{n} \frac{1}{n 3^{n}}$

Answer: The center of the series is $c=1$. Let $a_{n}=\frac{(x-1)^{n}}{n 3^{n}}$. We apply the ratio test regarding x as some fixed value. We find
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{(x-1)^{n+1}}{(n+1) 3^{3+1}}}{\frac{(x-1)^{n}}{n 3^{n}}}\right|=\left|\frac{(x-1)^{n+1}}{(n+1) 3^{n+1}}\right| \cdot\left|\frac{n 3^{n}}{(x-1)^{n}}\right|=\frac{\left|(x-1)^{n} \cdot(x-1)\right|}{(n+1) 3^{n} \cdot 3} \cdot \frac{n 3^{n}}{\left|(x-1)^{n}\right|}=\frac{|x-1|}{3} \cdot \frac{n}{n+1}$.
Then, since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3} \cdot \frac{n}{n+1}=\frac{|x-1|}{3} \cdot \lim _{n \rightarrow \infty} \frac{n}{n+1}=\frac{|x-1|}{3} \cdot 1,
$$

we solve $|x-1| / 3<1$ to find where the power series converges (by the ratio test). This yields $|x-1|<3$ and thus the radius of convergence is $R=3$. The power series converges for $-2<x<4$ and diverges for $|x-1|>3$. However, we must check the endpoints $x=-2$ and $x=4$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the Alternating Series Test (it is -1 times the Alternating Harmonic Series). Substituting $x=4$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges since it is the Harmonic Series (a p-series with $p=1$). Therefore, the interval of convergence for the power series is $-2 \leq x<4$ or $[-2,4)$.
3. $\sum_{n=1}^{\infty}(x-1)^{n} \frac{1}{n^{2} 3^{n}}$

Answer: Notice the similarity with the previous problem. The center of the series is $c=1$. Let $a_{n}=\frac{(x-1)^{n}}{n^{2} 3^{n}}$. We apply the ratio test regarding x as some fixed value. We find

$$
\begin{gathered}
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{(x-1)^{n+1}}{(n+1)^{n} 3^{n+1}}}{\frac{(x-1)^{n}}{n^{2} 3^{n}}}\right|=\left|\frac{(x-1)^{n+1}}{(n+1)^{2} 3^{n+1}}\right| \cdot\left|\frac{n^{2} 3^{n}}{(x-1)^{n}}\right|=\frac{\left|(x-1)^{n} \cdot(x-1)\right|}{(n+1)^{2} 3^{n} \cdot 3} \cdot \frac{n^{2} 3^{n}}{\left|(x-1)^{n}\right|} \\
=\frac{|x-1|}{3} \cdot \frac{n^{2}}{n^{2}+2 n+1}
\end{gathered}
$$

Then, since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3} \cdot \frac{n^{2}}{n^{2}+2 n+1}=\frac{|x-1|}{3} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=\frac{|x-1|}{3} \cdot 1
$$

we solve $|x-1| / 3<1$ to find where the power series converges (by the ratio test). This yields $|x-1|<3$ and thus the radius of convergence is $R=3$. The power series converges for $-2<x<4$ and diverges for $|x-1|>3$. However, we must check the endpoints $x=-2$ and $x=4$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which converges by the Alternating Series Test or by the Absolute Convergence Test. Substituting $x=4$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which converges since it is a p-series with $p=2$. Therefore, the interval of convergence for the power series is $-2 \leq x \leq 4$ or $[-2,4]$.

