MATH 136-03 Calculus 2, Spring 2019

Section 10.6: Power Series

Solutions

Exercises: Find the radius R and interval of convergence for each of the following power series. Be
sure to check the endpoints.
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Answer: The center of the series is ¢ = 0. Let a,, = ‘;—Z We apply the ratio test regarding x as
some fixed value. We find
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Then, since lim o1 ) — fim J| = m, we solve |z|/2 < 1 to find where the power series
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converges (by the ratio test). This yields |z| < 2 and thus the radius of convergence is R = 2.
The power series converges for —2 < x < 2 and diverges for |z| > 2. However, we must check

the endpoints © = 2 and z = —2 directly to determine if the series converges at these points.
Substituting £ = —2 into the original series gives
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which diverges by the nth term test. Substituting x = 2 into the original series gives

which also diverges by the nth term test. Therefore, the interval of convergence for the power
series is —2 <z < 2 or (—2,2).
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Answer: The center of the series is ¢ = 1. Let a,, = ;;L)n We apply the ratio test regarding
x as some fixed value. We find
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we solve | — 1|/3 < 1 to find where the power series converges (by the ratio test). This yields
|z — 1| < 3 and thus the radius of convergence is R = 3. The power series converges for
—2 < x < 4 and diverges for |z — 1| > 3. However, we must check the endpoints x = —2 and
x = 4 directly to determine if the series converges at these points.

Substituting x = —2 into the original series gives
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which converges by the Alternating Series Test (it is —1 times the Alternating Harmonic Series).
Substituting = = 4 into the original series gives
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which diverges since it is the Harmonic Series (a p-series with p = 1). Therefore, the interval of
convergence for the power series is —2 < z < 4 or [—2,4).
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Answer: Notice the similarity with the previous problem. The center of the series is ¢ = 1. Let
ay = % We apply the ratio test regarding = as some fixed value. We find
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we solve |z — 1|/3 < 1 to find where the power series converges (by the ratio test). This yields
|z — 1| < 3 and thus the radius of convergence is R = 3. The power series converges for
—2 < x < 4 and diverges for |z — 1| > 3. However, we must check the endpoints z = —2 and
x = 4 directly to determine if the series converges at these points.

Substituting x = —2 into the original series gives
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which converges by the Alternating Series Test or by the Absolute Convergence Test. Substitut-
ing x = 4 into the original series gives
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which converges since it is a p-series with p = 2. Therefore, the interval of convergence for the
power series is —2 < z < 4 or [—2,4].



