MATH 136-03 Calculus 2, Spring 2019
Section 10.6: Power Series

This section concerns infinite series where the terms being summed are functions of z, specifically
power functions of the form (z — ¢)” for some constant c. These series, called power series, play an
important role in applications of calculus since they are excellent approximations to more complicated
functions such as e® and sin .

Definition: Power Series

A power series centered at c is an infinite series of the form
o
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Here, the center of the series is the constant ¢ and the variable is x.

Example 1: The infinite series
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is a power series centered at ¢ = 3. Note that 0! = 1 by convention. The series
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is a power series centered at ¢ = 0. Note that although this series begins at n = 1, it is still considered
a power series.

The main question when studying power series is to determine the set of x-values for which the
series converges. For example, in the series defined in equation (1) above, we have
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which converges by the ratio test (see Example 1 on the worksheet for Section 10.5). This allows us
to define the function F' at x = 5 to be the unique number that the infinite series converges to. On
the other hand, in the series defined in equation (2) above, we have
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which diverges because it is the Harmonic Series. Therefore, G(1) is undefined.

While it may seem daunting to find the set of all x for which a given power series converges, it turns
out that there is a unique value R > 0, called the radius of convergence, such that the power series
converges absolutely for |z — ¢| < R and diverges when |z — ¢| > R. In other words, for any power
series centered at ¢, there is an interval of convergence centered at ¢ of the formc— R < x <c+ R
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Possible convergence at the endpoints

for which the power series converges. The series may or may not converge at the endpoints x =c— R
or x = ¢+ R (see figure above). If R = 0, then the series converges only when z = ¢. If R = oo, then
the power series converges for all z. The radius of convergence can be found using the ratio test.
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Example 2: Use the ratio test to determine where F'(x Z —| x — 3)" converges.
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Let a, = (I;—?)n We apply the ratio test regarding = as some fixed value. We find
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Then, since lim = lim —— = |z — 3| lim = 0, the power series converges for any x.

The solution is (—oo,00) or R. The radius of convergence is R = 0.
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Example 3: Use the ratio test to determine where G(z Z —x" converges.

S

Let a, = % We apply the ratio test regarding = as some fixed value. We find
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Then, since lim |——| = lim |z| - —— = |z| - lim = |z|, the power series converges for any x
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satisfying |x| < 1 by the ratio test. The radius of convergence is R = 1. This shows that the power
series converges for —1 < x < 1 and diverges for |x| > 1. However, we must check the endpoints x = 1
and z = —1 directly to determine if the series converges at these points. We have already seen that
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G(1) = Z — diverges since it is the Harmonic Series. On the other hand, notice that
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converges by the Alternating Series Test (it is —1 times the Alternating Harmonic Series). We conclude
that the power series G(z) converges for —1 <z <1 or [—1,1).



Exercises: Find the radius R and interval of convergence for each of the following power series. Be
sure to check the endpoints.
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