
MATH 136-03 Calculus 2, Spring 2019

Section 10.4: Absolute and Conditional Convergence

In this section we learn some useful tests for determining whether a series with both positive and
negative terms converges or diverges. Recall that convergence tests such as the integral or comparison
test require that the terms all be positive. Here we consider series where the terms may be either
positive or negative, with particular attention to series where the terms alternate in sign.

Definition: Absolute and Conditional Convergence

An infinite series
∞∑
n=1

an converges absolutely if the series
∞∑
n=1

|an| converges. On the other hand,

the series converges conditionally if
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges.

Note that an ≤ |an| always, so that considering the series of absolute values is considering a series
with larger terms. Having a mixture of positive and negative terms in a series (e.g., alternating
+−+−+− . . .) is useful for convergence as it helps the sequence of partial sums converge. Think of
the shopping cart metaphor; if you alternate between buying an item and receiving store credit, you
have a much better chance of converging, assuming the terms are approaching zero. (The nth term
divergence test still applies to series with terms of different signs.) Note also that if a series has only
positive terms, or a finite number of negative terms, then absolute convergence is equivalent to regular
convergence.

Example 1: The following are all examples of absolutely convergent series:

∞∑
n=1

1

n2
,

∞∑
n=1

(−1)n

n2
,

∞∑
n=1

sinn

n3
.

Why? The first series, which converges because it is a p-series with p = 2, contains only positive terms
so taking the absolute value of each term does not change the series. The second series becomes equal
to the first one when taking the absolute value of each term because |(−1)n| = 1. Thus this series is
absolutely convergent because the first series converges. Using the fact that | sinn| ≤ 1 for any n, we
have

∞∑
n=1

∣∣∣∣sinn

n3

∣∣∣∣ =
∞∑
n=1

| sinn|
n3

≤
∞∑
n=1

1

n3
,

which converges as a p-series with p = 3. Thus,
∞∑
n=1

∣∣∣∣sinn

n3

∣∣∣∣ converges by the comparison test.

Example 2: The standard example of a conditionally convergent series is the Alternating Harmonic
Series, defined as

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+− · · ·

This series converges by the Alternating Series Test (see next page) and its sum is exactly ln 2. However,

taking the absolute value of each term gives the Harmonic Series
∞∑
n=1

1

n
, which diverges.
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The Absolute Convergence Test

If the infinite series
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges as well.

This is a useful test to apply when considering series that have some negative terms. Sometimes
taking the absolute value of the terms in a series makes the series easier to understand and prove
convergence. The converse of this test is false, as demonstrated by the alternating harmonic series.

Just because
∞∑
n=1

an converges does not imply that
∞∑
n=1

|an| converges. In fact, any conditionally

convergent series would violate the converse of this test.

Exercise 1: Use the absolute convergence test to show that
∞∑
n=1

cosn

n2
converges.

The Alternating Series Test

Suppose that {an} is a decreasing sequence of positive numbers that converges to 0. Then the

alternating series
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − a6 +− · · · converges.

A decreasing sequence is one for which an+1 ≤ an, that is, the next term in the sequence is smaller
or equal to the previous one. This is the best test to apply when considering the convergence of an
alternating series. By plotting the sequence of partial sums, it is easy to believe the veracity of this
test. The partial sums will oscillate back and forth because the signs alternate. However, since the
terms are getting smaller and smaller in size, the partial sums will oscillate about, and approach, the
limit of the series (see Figure 2). Note the difference between this test and the nth term divergence
test.
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Exercises:

2. Use the alternating series test to show that the Alternating Harmonic Series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+− · · ·

converges.

3. Determine whether the given series converges absolutely, converges conditionally, or diverges.

(a)
∞∑
n=1

(−1)n
1

2n
(b)

∞∑
n=1

(−1)n+1

√
n

(c)
∞∑
n=1

sin(3n)

n3/2
(d)

∞∑
n=2

(−1)n+1

n lnn

4. Determine whether the given series converges or diverges using an appropriate test.

(a)
∞∑
n=1

(−1)n
n2

n2 + 1
(b)

∞∑
n=1

(−1)n+1 n
2

en3
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