MATH 136-03 Calculus 2, Spring 2019

Section 6.2: Setting Up Integrals: Volume and Average Value

In this section we learn how to find the volume of a three-dimensional solid by summing up areas of cross sections. We also learn how to find the average value of a function, an important quantity to compute in many applications.

Average Value

Recall that the average of n numbers $y_{1}, y_{2}, \ldots, y_{n}$ is given by

$$
\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}=\frac{1}{n} \sum_{j=1}^{n} y_{j} .
$$

How do we generalize this formula to find the average value of a function? For example, suppose we know the temperature in a room as a function of time. How do we calculate the average temperature over a particular time interval?

We begin by choosing n points $x_{1}, x_{2}, \ldots, x_{n}$ in an interval $[a, b]$ and computing the average of their function values:

$$
\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n}=\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)
$$

If we let $\Delta x=\frac{b-a}{n}$, then we find that $\frac{1}{n}=\frac{\Delta x}{b-a}$. Therefore

$$
\text { Average Value } \approx \frac{\Delta x}{b-a} \sum_{j=1}^{n} f\left(x_{j}\right)=\frac{1}{b-a} \sum_{j=1}^{n} f\left(x_{j}\right) \Delta x
$$

The right-hand side of the previous equation can be interpreted as a Riemann sum! Taking the limit as $n \rightarrow \infty$ (which means sampling the function at more and more x-values) leads to an integral definition for the average value of a function $f(x)$ on the interval $[a, b]$:

$$
\begin{equation*}
\text { Average Value }=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

Example 1: Find the average value of $f(x)=\sin x$ on the interval $[0, \pi]$.
Answer: Using the formula above, we compute the average value to be

$$
\frac{1}{\pi-0} \int_{0}^{\pi} \sin x d x=\frac{1}{\pi} \cdot-\left.\cos x\right|_{0} ^{\pi}=-\frac{1}{\pi}(\cos \pi-\cos 0)=-\frac{1}{\pi}(-1-1)=\frac{2}{\pi} .
$$

One way to visualize the average value of a function is to interpret it as the average "height" (Figure 1).

Figure 1: The average value of a function is the average height M that makes the area under the graph equal to the area of the rectangle with height M and base $b-a$.

Exercise 1: Find the average value of $f(x)=4-x^{2}$ on $[-2,2]$. Illustrate your answer with a graph as in Figure 1.

Exercise 2: Find the average value of $g(t)=\sqrt{t}$ on $[1,4]$.

Volume

How do we calculate the volume of a 3D solid? One technique is to divide the solid into thin cross sections and then add up the volumes of each cross section (see Figure 2). Suppose that there are n cross sections each with the same width Δy. If we know the area of the cross section at a height of y_{i} is given by $A\left(y_{i}\right)$, then the volume of that cross section is $A\left(y_{i}\right) \Delta y$ (see Figure 2). Thus, we have

$$
\text { Volume } \approx \sum_{i=0}^{n-1} A\left(y_{i}\right) \Delta y
$$

Once again, this can be interpreted as a Riemann sum. As $\Delta y \rightarrow 0$, the sum above becomes an integral over the range of heights in the y-direction:

$$
\begin{equation*}
\text { Volume }=\int_{a}^{b} A(y) d y \tag{2}
\end{equation*}
$$

DF FIGURE 2 Divide the solid into thin horizontal slices. Each slice is nearly a right cylinder whose volume can be approximated as area times height.

Note that there is nothing special here about taking horizontal cross sections. This technique for finding the volume of a solid works perfectly well using vertical cross sections (perpendicular to the x-axis) between $x=a$ and $x=b$. In this case formula (2) becomes

$$
\begin{equation*}
\text { Volume }=\int_{a}^{b} A(x) d x \tag{3}
\end{equation*}
$$

Figure 3: Finding the volume of a sphere of radius R using circular cross sections perpendicular to the x-axis.

Exercise 3: Use Figure 3 and circular cross sections perpendicular to the x-axis to show that the volume of a sphere of radius R is $V=\frac{4}{3} \pi R^{3}$.

Exercise 4: Find the volume of the solid whose base is the unit circle $x^{2}+y^{2}=1$ with cross sections perpendicular to the x-axis equal to triangles whose height and base are equal.

Hint: Find the base of each triangle as a function of x.

