MATH 136-03 Calculus 2, Spring 2019 Section 7.1: Integration by Parts SOLUTIONS

1. Use integration by parts to compute $\int x \sin x d x$. Let $u=x$ and $d v=\sin x d x$.

Answer: Since $u=x$ and $d v=\sin x d x$, we have $d u=1 d x$ and $v=-\cos x$. Using the integration by parts formula gives

$$
\int x \sin x d x=-x \cos x-\int-\cos x d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x+c .
$$

2. Compute $\int \ln x d x$ by setting $u=\ln x$ and $d v=1 d x$.

Answer: Since $u=\ln x$ and $d v=1 d x$, we have $d u=1 / x d x$ and $v=x$. Using the integration by parts formula gives

$$
\int \ln x d x=x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-\int 1 d x=x \ln x-x+c
$$

Note that we simplify the expression in the integrand before trying to evaluate the integral.
3. Evaluate $\int x^{3} \ln x d x$.

Answer: Here we take $u=\ln x$ and $d v=x^{3} d x$. Had we gone with $u=x^{3}$ and $d v=\ln x d x$, we would need to integrate $\ln x$ to find v, which is too complicated (see the previous problem). Thus $d u=1 / x d x$ and $v=x^{4} / 4$. Using the integration by parts formula gives

$$
\begin{gathered}
\int x^{3} \ln x d x=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4} \cdot \frac{1}{x} d x=\frac{x^{4}}{4} \ln x-\int \frac{x^{3}}{4} d x \\
=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+c=\frac{x^{4}}{16}(4 \ln x-1)+c .
\end{gathered}
$$

4. Evaluate $\int x^{2} \sin (2 x) d x$.

Answer: This problem involves integration by parts twice. First, let $u=x^{2}$ and $d v=\sin (2 x) d x$. Then $d u=2 x d x$ and $v=-\frac{1}{2} \cos (2 x)$. Using the integration by parts formula gives

$$
\int x^{2} \sin (2 x) d x=-\frac{x^{2}}{2} \cos (2 x)-\int-\frac{1}{2} \cdot 2 x \cos (2 x) d x=-\frac{x^{2}}{2} \cos (2 x)+\int x \cos (2 x) d x
$$

The remaining integral also requires integration by parts, but notice that the power has dropped from 2 in the original to 1 . We let $u=x$ and $d v=\cos (2 x) d x$. Then $d u=1 d x$ and $v=\frac{1}{2} \sin (2 x)$. Therefore

$$
\int x \cos (2 x) d x=\frac{x}{2} \sin (2 x)-\int \frac{1}{2} \sin (2 x) d x=\frac{x}{2} \sin (2 x)+\frac{1}{4} \cos (2 x)+c .
$$

Substituting this result into the previous line, we find

$$
\int x^{2} \sin (2 x) d x=-\frac{x^{2}}{2} \cos (2 x)+\frac{x}{2} \sin (2 x)+\frac{1}{4} \cos (2 x)+c .
$$

5. Evaluate $\int_{0}^{1} \tan ^{-1} x d x$.

Answer: Let $u=\tan ^{-1} x$ and $d v=1 d x$. Then $d u=\frac{1}{x^{2}+1} d x$ and $v=x$. Using the integration by parts formula gives

$$
\int_{0}^{1} \tan ^{-1} x d x=\left.x \tan ^{-1} x\right|_{0} ^{1}-\int_{0}^{1} \frac{x}{x^{2}+1} d x=\frac{\pi}{4}-\int_{0}^{1} \frac{x}{x^{2}+1} d x
$$

since $\tan ^{-1}(1)=\pi / 4$. The remaining integral can be done using a u-sub with $u=x^{2}+1$ and $d u=2 x d x$. Also, if $x=0$, then $u=1$ and if $x=1$, then $u=2$. We have

$$
\int_{0}^{1} \frac{x}{x^{2}+1} d x=\frac{1}{2} \int_{0}^{1} \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \int_{1}^{2} \frac{1}{u} d u=\left.\frac{1}{2} \ln u\right|_{1} ^{2}=\frac{1}{2} \ln 2
$$

Therefore the integral evaluates to $\frac{\pi}{4}-\frac{1}{2} \ln 2$.
6. Evaluate $\int e^{3 x} \cos x d x$.

Hint: Let $I=\int e^{3 x} \cos x d x$. Do integration by parts twice and then solve for I.
Answer: First we let $u=e^{3 x}$ and $d v=\cos x d x$. Then $d u=3 e^{3 x} d x$ and $v=\sin x$. Using the integration by parts formula gives

$$
\int e^{3 x} \cos x d x=e^{3 x} \sin x-\int 3 e^{3 x} \sin x d x
$$

Next we do integration by parts again, letting $u=3 e^{3 x}$ and $d v=\sin x d x$. Then $d u=9 e^{3 x} d x$ and $v=-\cos x$. Thus

$$
\int 3 e^{3 x} \sin x d x=-3 e^{3 x} \cos x-\int-9 e^{3 x} \cos x d x=-3 e^{3 x} \cos x+9 \int e^{3 x} \cos x d x
$$

At this point it may feel like we are going around in circles given that we have arrived back at the original integral. However, if we let $I=\int e^{3 x} \cos x d x$, then we have discovered that

$$
I=e^{3 x} \sin x-\left(-3 e^{3 x} \cos x+9 I\right)=e^{3 x} \sin x+3 e^{3 x} \cos x-9 I
$$

Solving for I we find

$$
10 I=e^{3 x} \sin x+3 e^{3 x} \cos x=e^{3 x}(\sin x+3 \cos x) \quad \Longrightarrow \quad I=\frac{1}{10} e^{3 x}(\sin x+3 \cos x)+c .
$$

7. Evaluate $\int \cos (\sqrt{x}) d x$. Hint: First let $u=\sqrt{x}$ and do a u-sub. Then do integration by parts. Answer: Let $u=\sqrt{x}$. Then $d u=\frac{1}{2} x^{-1 / 2} d x=\frac{1}{2 \sqrt{x}} d x=\frac{1}{2 u} d x$. This in turn gives $d x=2 u d u$ so the integral transforms as

$$
\int \cos (\sqrt{x}) d x=\int \cos (u) \cdot 2 u d u=2 \int u \cos u d u
$$

This last integral can be done using integration by parts. Let $w=u$ and $d v=\cos u d u$. Then $d w=1 d u$ and $v=\sin u$. The integration by parts formula gives

$$
2 \int u \cos u d u=2\left(u \sin u-\int \sin u d u\right)=2(u \sin u+\cos u)+c .
$$

Returning to the original variable, we have

$$
\int \cos (\sqrt{x}) d x=2(\sqrt{x} \sin (\sqrt{x})+\cos (\sqrt{x}))+c .
$$

