MATH 136-03 Calculus 2, Spring 2019

 Section 7.8: Probability and Integration

 Section 7.8: Probability and Integration}

This section focuses on a key type of function in the theory of probability, namely the probability density function (PDF). Probability is a subject that focuses on the likelihood or chance that a particular event will occur. Events are described by random variables, such as the income of someone in the United States, or the height of a random Holy Cross student.

The notation used for probabilities is fairly straight-forward. $P(a \leq x \leq b)$ means the probability that the variable x (measuring income, height, GPA, etc.) lies between the values a and b. For instance, if x represents the yearly income of a typical US citizen, then

$$
P(20,000 \leq x \leq 30,000)=0.24
$$

means the probability that a typical US citizen makes between $\$ 20,000$ and $\$ 30,000$ in one year is 24%. The value of a probability is always a percent, that is, a number between 0 and 1 . A probability of 0 means the event has no chance of occurring while a probability of 1 means the event will absolutely take place. The statement

$$
P(x \geq 300,000)=0.01
$$

means that 1% of the US population has an income greater than $\$ 300,000$.

Probability Density Functions

The primary purpose of a probability density function is to compute probabilities. This is done by evaluating a definite integral.

Definition: A probability density function $p(x)$ satisfies the following:
(i) $p(x) \geq 0$ for all x,
(ii) $\int_{-\infty}^{\infty} p(x) d x=1$
(iii) $P(a \leq x \leq b)=\int_{a}^{b} p(x) d x$.

Notes about PDF's:

- The third item is the real point of the definition. We compute the probability that x lies between a and b by evaluating the integral of p from a to b. In other words, the probability that x lies between a and b is equal to the area under the PDF from a to b.
- The first item in the definition states that the graph of p cannot lie below the x-axis. This means that $\int_{a}^{b} p(x) d x \geq 0$, so that $P(a \leq x \leq b) \geq 0$. This is to be expected because the value of a probability should always be positive or 0 .
- The second item in the definition states that the total area under the graph of p is equal to 1 . Taken with the third item in the definition, this means that $P(-\infty<x<\infty)=1$, which makes logical sense; the probability that a real random variable lies somewhere on the real line is 100%.

Moreover, since $p(x) \geq 0$, and the total area under the graph of p is $1, \int_{a}^{b} p(x) d x \leq 1$ always. It follows that

$$
0 \leq \int_{a}^{b} p(x) d x \leq 1 \quad \text { or } \quad 0 \leq P(a \leq x \leq b) \leq 1
$$

which agrees with the fact that probabilities are always percentages between 0% and 100%.

Exercises

1. Find the value of C that makes $p(x)=\left\{\begin{array}{cl}0 & \text { if } x<0 \\ \frac{C}{(x+2)^{2}} & \text { if } x \geq 0\end{array}\right.$ a probability density function. Then compute $P(0 \leq x \leq 1)$ and $P(x \geq 1)$.
2. Show that $f(x)=\left\{\begin{array}{cc}0 & \text { if } x<0 \\ k e^{-k x} & \text { if } x \geq 0\end{array}\right.$ is a probability density function for any constant $k>0$. This PDF is known as the exponential density function.
3. Suppose that the probability a telephone call made in the US lasts between a and b minutes is modeled by the exponential density function with $k=1 / 4$.
a) What is the probability that a call lasts between 2 and 3 minutes?
b) What is the probability that a call lasts over an hour?

Mean or Average Value

One important quantity associated to any probability density function is the mean. Intuitively, the mean measures the average value of x over the long run.

The mean of a PDF $p(x)$, denoted as μ (pronounced "mu"), is

$$
\mu=\int_{-\infty}^{\infty} x p(x) d x
$$

It is the average value of the random variable x over the long run.
4. Show that the mean of the exponential density function is $1 / k$.
5. Show that $f(x)=\left\{\begin{array}{cl}\frac{1}{2 \pi} \sqrt{4-x^{2}} & \text { if }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array} \quad\right.$ is a probability density function, and then calculate its mean. Hint: Draw a graph of f and interpret the integrals in terms of area.

