MATH 136-03 Calculus 2, Spring 2019
 Section 7.2: Trigonometric Integrals

This section focuses on integrals involving powers of $\cos x$ and $\sin x$. For these types of integrals, the key is to use the correct trig identity to simplify the integrand into a form where a u-sub or formula may be applied to compute the integral.

Odd Powers of $\cos x$ or $\sin x$
Example 1: Compute $\int \cos ^{5} x d x$ using the identity $\cos ^{2} x=1-\sin ^{2} x$.
Answer: When either $\cos x$ or $\sin x$ is raised to an odd power, break off one of the $\cos x$ or $\sin x$ terms and then use the identity above to replace the even power. For this example, we write

$$
\cos ^{5} x=\cos x \cdot \cos ^{4} x=\cos x \cdot\left(\cos ^{2} x\right)^{2}=\cos x\left(1-\sin ^{2} x\right)^{2}=\left(1-2 \sin ^{2} x+\sin ^{4} x\right) \cos x
$$

Now we can use a u-substitution with $u=\sin x$ and $d u=\cos x d x$. We obtain

$$
\int \cos ^{5} x d x=\int\left(1-2 \sin ^{2} x+\sin ^{4} x\right) \cos x d x=\int 1-2 u^{2}+u^{4} d u=u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}+c .
$$

Returning to the original variable, the solution is $\sin x-\frac{2}{3} \sin ^{3} x+\frac{1}{5} \sin ^{5} x+c$.
A similar strategy will work when $\sin x$ is raised to an odd power. In this case, use the identity $\sin ^{2} x=1-\cos ^{2} x$ and let $u=\cos x$.

Even Powers of $\cos x$ and $\sin x$

When both $\cos x$ and $\sin x$ are raised to an even power, we can use one of the double angle formulas

$$
\begin{equation*}
\cos ^{2} x=\frac{1}{2}(1+\cos (2 x)) \quad \text { or } \quad \sin ^{2} x=\frac{1}{2}(1-\cos (2 x)) . \tag{1}
\end{equation*}
$$

These identities can be derived from the double angle formulas for cosine:

$$
\cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x
$$

Note that the last two expressions can be obtained from the first by using $\cos ^{2} x+\sin ^{2} x=1$.
Example 2: Evaluate $\int_{0}^{\pi / 4} \cos ^{2} \theta d \theta$.
Answer: We use the first equation in (1).

$$
\int_{0}^{\pi / 4} \cos ^{2} \theta d \theta=\int_{0}^{\pi / 4} \frac{1}{2}(1+\cos (2 \theta)) d \theta=\left.\frac{1}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi / 4}=\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2}\right)=\frac{\pi}{8}+\frac{1}{4}=\frac{2+\pi}{8}
$$

Exercises

1. Compute $\int \sin ^{3} x d x$ using the identity $\sin ^{2} x=1-\cos ^{2} x$.
2. Evaluate $\int \sin ^{4} x \cdot \cos ^{3} x d x$.
3. Evaluate $\int_{-\pi / 2}^{\pi / 2} \sin ^{2} \theta d \theta$.
4. Evaluate $\int \cos ^{4} x d x$.

Hint: Write $\cos ^{4} x=\left(\cos ^{2} x\right)^{2}$ and use the first equation in (1).
5. Derive the formula $\int \sec x d x=\ln |\sec x+\tan x|+c$.

Hint: Write $\sec x=\frac{\sec x}{1}$ and multiply top and bottom by $\sec x+\tan x$.

