MATH 136-03 Calculus 2, Spring 2019

Section 7.3: Trigonometric Substitution

This section focuses on integrals involving expressions of the form $\sqrt{a^{2}-x^{2}}$ or $\sqrt{x^{2}+a^{2}}$, where a is a constant. For these types of integrals, the key is to make a trig substitution that converts the integral into a simpler form. Then, after computing the integral in the new variable (usually θ), we use a right triangle and $\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$ to convert back into the original variable.

Useful Trig Identities:

$$
\begin{align*}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \tag{1}\\
1+\tan ^{2} \theta & =\sec ^{2} \theta \tag{2}\\
\sin (2 \theta) & =2 \sin \theta \cos \theta \tag{3}
\end{align*}
$$

Note that identity (2) above can be derived from (1) by dividing both sides of the equation by $\cos ^{2} \theta$.
The general technique of trig substitution is:

- for integrals containing $\sqrt{a^{2}-x^{2}}$, use the substitution $x=a \sin \theta$,
- for integrals with $\sqrt{x^{2}+a^{2}}$, or $x^{2}+a^{2}$ in the denominator, use the substitution $x=a \tan \theta$.

Integrals involving $\sqrt{a^{2}-x^{2}}$

Example 1:

Compute $\int \sqrt{9-x^{2}} d x$ using the substitution $x=3 \sin \theta$.
Answer: Letting $x=3 \sin \theta$, we have $d x=3 \cos \theta d \theta$ and

$$
\sqrt{9-x^{2}}=\sqrt{9-9 \sin ^{2} \theta}=\sqrt{9\left(1-\sin ^{2} \theta\right)}=\sqrt{9 \cos ^{2} \theta}=3 \cos \theta
$$

Thus, the integral transforms to

$$
\begin{aligned}
\int 3 \cos \theta \cdot 3 \cos \theta d \theta & =9 \int \cos ^{2} \theta d \theta \\
& =9 \int \frac{1}{2}(1+\cos (2 \theta)) d \theta \\
& =\frac{9}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)+c \\
& =\frac{9}{2}(\theta+\sin \theta \cos \theta)+c
\end{aligned}
$$

To finish the problem, we return to the original variable x. We have $\sin \theta=x / 3$, so $\theta=\sin ^{-1}(x / 3)$. Using a right triangle with one angle equal to θ, we find $\cos \theta=\frac{1}{3} \sqrt{9-x^{2}}$. Hence, the solution is

$$
\frac{9}{2}\left(\sin ^{-1}\left(\frac{x}{3}\right)+\frac{x}{3} \cdot \frac{\sqrt{9-x^{2}}}{3}\right)=\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)+\frac{1}{2} x \sqrt{9-x^{2}}+c .
$$

Integrals involving $\sqrt{x^{2}+a^{2}}$
Example 2: Evaluate $\int_{0}^{3} \frac{1}{\sqrt{x^{2}+16}} d x$ using the substitution $x=4 \tan \theta$.
Answer: Letting $x=4 \tan \theta$, we have $d x=4 \sec ^{2} \theta d \theta$ and

$$
\sqrt{x^{2}+16}=\sqrt{16 \tan ^{2} \theta+16}=\sqrt{16\left(1+\tan ^{2} \theta\right)}=\sqrt{16 \sec ^{2} \theta}=4 \sec \theta
$$

Moreover, since $\tan \theta=x / 4$, we have $x=0$ implies $\tan \theta=0$ which means $\theta=0$, and $x=3$ implies $\tan \theta=3 / 4$ yielding $\theta=\tan ^{-1}(3 / 4)$. Thus, the integral transforms to

$$
\begin{aligned}
\int_{0}^{\tan ^{-1}(3 / 4)} \frac{1}{4 \sec \theta} \cdot 4 \sec ^{2} \theta d \theta & =\int_{0}^{\tan ^{-1}(3 / 4)} \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|_{0}^{\tan ^{-1}(3 / 4)} \\
& =\ln \left|\sec \left(\tan ^{-1}(3 / 4)\right)+3 / 4\right|-\ln |1+0| \\
& =\ln |5 / 4+3 / 4| \\
& =\ln 2
\end{aligned}
$$

Here we evaluate $\sec \left(\tan ^{-1}(3 / 4)\right.$ by drawing a right triangle with angle θ and opposite side 3 , adjacent side 4 . Then $\sec \theta=5 / 4$.

Exercises: Complete the following on a separate piece(s) of paper.

1. Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ using the substitution $x=2 \sin \theta$.

Check your answer by interpreting the integral as the area under the curve.
2. Evaluate $\int \frac{1}{x\left(x^{2}+4\right)} d x$ using the substitution $x=2 \tan \theta$.
3. Evaluate $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$.
4. Evaluate $\int_{\sqrt{3}}^{3} \frac{1}{x^{2} \sqrt{x^{2}+9}} d x$.

