
MATH 241-02, Multivariable Calculus, Spring 2019

Section 9.3: The Dot Product

How do we multiply two vectors? We have seen that there is a natural geometric and algebraic way to
add two vectors. But what about multiplying them together? It turns out that there are two different
ways to multiply vectors: the dot product and the cross product. This sections focuses on the dot
product.

The Dot Product

Suppose that v =<a1, b1, c1> and w =<a2, b2, c2> are two vectors and let θ be the angle between
them. To find θ, place the tails of the two vectors at the same point and measure the angle between
them, assuming that 0 ≤ θ ≤ π. If the vectors point in the same direction, then θ = 0; if they point
in the opposite direction, then θ = π; and if they are perpendicular, then θ = π/2. We give two
equivalent definitions of the dot product.

Dot Product:
Algebraic Definition: v ·w = a1a2 + b1b2 + c1c2

Geometric Definition: v ·w = |v| |w| cos θ

Thus, the dot product can be found by multiplying corresponding components together and then
adding the result. Or, if you know the angle between the two vectors, then the dot product can be
found by multiplying the lengths of the two vectors together along with the cosine of the angle between
them. If the vectors are two dimensional, then the dot product definition is the same as above except
that the c1c2 term in the algebraic definition vanishes.

Important Observation: The dot product of two vectors is always a number (a scalar)!

Example 1: Compute the dot product of v =<1,−4, 0> and w =<5, 3,−2>.

Answer: Using the algebraic definition of the dot product we have

v ·w = 1 · 5 +−4 · 3 + 0 · −2 = 5− 12 + 0 = −7.

Note that it is perfectly fine to have a negative value for the dot product. In fact, a negative dot
product means the angle between the two vectors is obtuse because cos θ < 0. Since the lengths of
vectors are always positive, it is the cos θ term that determines the sign of the dot product.

Figure 1: The dot product is positive when the angle between the vectors is acute; it is negative when
they are obtuse; and zero if they are perpendicular.
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Exercise 1: Let v = 2 i + 2 j and w = −3 j be two vectors in the plane. Compute the dot product
v ·w using both the algebraic and geometric definitions and show that they agree.

Exercise 2: Show that the vectors v = −i + 2 j + 2 k and w = 2 i − 4 j + 5 k are orthogonal
(perpendicular).

Exercise 3: Find the angle between the vectors v = 2 i− 3 j + k and w =<1, 0,−5> to the nearest
degree.

Properties of the Dot Product

The following properties of the dot product hold for any vectors v, w, and u. These are straight-
forward to verify using the algebraic definition of the dot product.

1. v · v = |v|2

2. v ·w = w · v (commutative)

3. v · (cw) = (cv) ·w = c(v ·w) (scalars pull out)

4. u · (v + w) = u · v + u ·w and

(v + w) · u = v · u + w · u (distributive property)

Exercise 4: Let v =< a, b, c >. Show that v · v = |v|2 using the algebraic definition of the dot
product.
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Algebraic and Geometric Definitions Match

We now show that the algebraic and geometric definitions of the dot product are equivalent. This
can be accomplished using the Law of Cosines. If a triangle has sides of length a, b, and c, and θ is
the angle opposite side c, then the Law of Cosines states

c2 = a2 + b2 − 2ab cos θ .

This rule is valid whether θ is acute or obtuse. Let u and v be any two vectors, and let θ be the angle
between them. Recall that the vector u−v forms a triangle with u and v (see Figure 2). By the Law
of Cosines, we have

|u− v|2 = |u|2 + |v|2 − 2|u| |v| cos θ . (1)

Figure 2: The vectors u,v, and u− v form a triangle.

Exercise 5: Using properties of the dot product (all of which follow from the algebraic definition),
show that equation (1) simplifies to u ·v = |u| |v| cos θ. This shows the two definitions are equivalent.

Projections

Our final topic is how to project one vector onto another. This is particularly important in physics
and engineering applications as well as many other subjects in mathematics (e.g., geometry). We will
denote the vector projection of b onto a as projab. It is obtained by drawing a perpendicular line
from the head of b to a (see the red vectors in Figure 3). Note that the projection of b onto a is a
vector pointing in the same direction as a.

Figure 3: The vector projection of b onto a, denoted by projab.
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The scalar projection of b onto a, also called the component of b along a, is the signed
magnitude of projab (the signed length of the red vectors in Figure 3). It is positive if the angle
between a and b is acute and negative if the angle is obtuse. The scalar projection of b onto a is
denoted by compab.

Important Note: The scalar projection is a number, while the vector projection is a vector.

To find formulas for compab and projab, we use right-triangle trigonometry. If θ is the angle
between a and b, then the signed length of the scalar projection of b onto a is |b| cos θ (see Figure 4).

Figure 4: The scalar projection of b onto a, denoted by compab, is equal to |b| cos θ since the cosine
of an angle in a right triangle equals adjacent/hypotenuse.

Then, using a · b = |a| |b| cos θ, we see that |b| cos θ =
a · b
|a|

. This gives the formula for compab.

To obtain the projection of b onto a, we multiply compab by the unit vector in the direction of a.
Recall that the unit vector in the direction of a is given by a

|a| . This gives the following formulas for
the scalar and vector projections.

Scalar projection of b onto a: compab =
a · b
|a|

Vector projection of b onto a: projab =

(
a · b
|a|

)
a

|a|
=

a · b
a · a

a

Exercise 6: Find the scalar and vector projections of b =<4,−3,−1> onto a =<2, 2,−3>.
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