
MATH 242: Principles of Analysis, Fall 2009

Logic and Proofs

Statements and Proofs

A proof is a sequence of statements starting from one or more assumptions or “hypotheses” and
leading by a chain of valid deductions to a “conclusion”.

Statements and negation: Let P and Q stand for mathematical statements, sentences that are
unambiguously true or false. Examples include “1 + 1 = 3”, “−1 < 1”, and “for every integer n,
n(n + 1) is even.”

The negation of a statement P is the logical opposite of P (sometimes denoted ∼P ). If P is
true, then ∼P is false. Similarly, if P is false, then ∼P is true. In the examples above, the negations
are “1 + 1 6= 3”, “−1 ≥ 1”, and “there exists an integer n such that n(n + 1) is not even.”

Basic logic: “and” and “or”: Statements can be conjoined in two basic ways to yield a third
statement. If P and Q are statements, the statement “P or Q” is true exactly when at least one of
P , Q is true. The statement “P and Q” is true exactly when both P and Q are true.

Implications: A sentence of the form “If P , then Q” (or “P implies Q”) is a direct implication.
It is often mathematically denoted by P ⇒ Q. P is called the hypothesis, Q the conclusion. An
implication is invalid if P is true but Q is false. Otherwise, the implication is valid. This has the
peculiar consequence that if P is false and Q is any statement, then “P implies Q” is valid. For
example,

“If 1 + 1 = 3, then the sky is purple,”

is a true statement! The idea is, by starting with a true statement and making valid deductions,
you will arrive only at true statements.

Contraposition: The implication “∼Q implies ∼P” is called the contrapositive of “P implies Q”.
An implication and its contrapositive are logically equivalent, namely are both valid or both invalid.
Practically speaking, you may replace an implication by its contrapositive when proving a theorem
or doing a homework problem. You’ll often find the contrapositive easier to prove. We’ll see some
examples as the course progresses.

Converse: The implication “Q implies P” is called the converse of “P implies Q”. An implication
and its converse are quite often not logically equivalent. For example,

“If you are attending Holy Cross, then you are a college student,”

is a true statement whose converse is false.
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Logical Equivalence: When an implication P ⇒ Q and its converse Q ⇒ P are both true, we
say that P and Q are logically equivalent and write P if and only if Q or P iff Q (mathematically,
we write P ⇐⇒ Q.)

All of the above can be captured nicely in a truth table.

P Q P or Q P and Q P ⇒ Q Q ⇒ P P ⇔ Q

T T T T T T T

T F T F F T F

F T T F T F F

F F F F T T T

Example: Let x stand for a real number. Let P be the statement “x = 1” and Q be the statement
“x2 − 1 = 0”. The implication P implies Q is valid. The converse implication, “If x2 − 1 = 0, then
x = 1” is invalid: The number x = −1 is a counterexample: It satisfies the converse hypothesis Q,
but not the converse conclusion P .

The contrapositive reads, “If x2 − 1 6= 0, then x 6= 1.” With a bit of thought you should be able
to convince yourself the contrapositive is valid, as it must be on logical grounds.

Principle of Induction: One very important proof technique is called the Principle of Induction

or simply “proof by induction.” Suppose that Pn is a statement that depends on the positive integer
n. In other words, as n changes, so does the statement. One example is, “The sum of the numbers
in the nth row of Pascal’s triangle is 2n.”

Suppose that each of the following statements were true:

1. P1 is true. (base case)

2. If Pk is true, then Pk+1 is true. (induction step)

Then, the Principle of Induction states that Pn is true for all n ∈ N.
Here is a metaphor for induction using an infinite ladder. We want to show that every rung of

the ladder can be reached. The base case allows us to start to climb the ladder. The second item
being true allows us to climb the next rung of the ladder. Thus, since P1 is true, the second part
of the Principle of Induction allows us to quickly conclude that P2 is true. But this in turn implies
that P3 is true and so on. Simply stated, if you can get from one rung to the next and you can
start at the bottom, then you can climb it all.

To prove a statement using induction, you must show both the base case and the induction step
are true. We will do a few examples in class.
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