# Mathematical Models <br> MATH 303 Fall 2018 <br> Midterm Exam Review Solutions 

1. (a) $1,3,4,7,11,18,29,47,76,123$
(b) $\lim _{n \rightarrow \infty} L_{n+1} / L_{n}=\phi$ (golden ratio; same argument as the Fibonacci numbers) $\lim _{n \rightarrow \infty} L_{n+3} / L_{n}=2 \phi+1=\phi^{3}$. Use

$$
\frac{L_{n+3}}{L_{n}}=\frac{L_{n+3}}{L_{n+2}} \cdot \frac{L_{n+2}}{L_{n+1}} \cdot \frac{L_{n+1}}{L_{n}}
$$

and the fact that the limit of the product equals the product of the limits.
(c) $L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}+\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$
(d) $L_{n} L_{n+2}-L_{n+1}^{2}=5(-1)^{n+1}$. Proof is similar to problem 2(c) on HW\#1.
2. Self-similarity in the construction of the vascular network of any species (e.g., constant branching ratio, constant ratio between radii of consecutive levels, etc.); the area principle (to ensure a smooth flow through the blood vessels); the volume-preserving principle; capillaries for different animals all have the same size and volume (this is probably the most presumptive of their assumptions).
3. Solve $\alpha=1+\frac{1}{1+\alpha}$ to find $\alpha=\sqrt{2}$. Solve $\beta=1+\frac{1}{2+\beta}$ to find $\beta=\frac{-1+\sqrt{13}}{2}$.
4. (a) $7,-1,1, \frac{1}{2}, \frac{5}{8}, \frac{19}{32}$
(b) $y_{k}=\frac{32}{5}\left(-\frac{1}{4}\right)^{k}+\frac{3}{5}$
(c) $3 / 5$
(d) $3 / 5$. Solve the equation $y_{k+1}=y_{k}$.
5. $y_{k}=\frac{1}{8} \cdot 5^{k}-\frac{1}{8}(-3)^{k}$. Sequence is $0,1,2,19,68,421, \ldots$
6. (a) $1,2,3,4,5,6 . \mathrm{Hmmm}$, is it that simple?
(b) $y_{k}=k+1$. It satisfies the difference equation because

$$
k+3=2(k+2)-(k+1)
$$

is a true statement $\forall k$. It also clearly agrees with the initial conditions.
(c) $y_{k}=y_{0}+\left(y_{1}-y_{0}\right) k$. This can be found by realizing that $y_{k}=c$ is a solution for any constant $c$. Then, since $y_{k}=k+1$ is also a solution, the general solution (by linearity) is $y_{k}=c+c_{1}(k+1)$. Now find the correct values of the unknowns $c$ and $c_{1}$.
7. (a) $\$ 2,417.04$. Use the standard formula with $a=1+0.03 / 12$.
(b) $\$ 2,417.65$. Use the standard formula with $a=(1+0.03 / 365)^{365 / 12}$. It only increases by roughly 61 cents.
(c) 13.9 years or 166.856 months. Take the formula

$$
P_{t}=P_{0} a^{t}-M \frac{1-a^{t}}{1-a}, \quad \text { where } a=e^{0.05 / 12}
$$

and solve the equation $P_{t}=0$ for $t$. You pay a total of $\$ 46,856.54$ in interest.
(d) It is better to receive $\$ 600$ in 5 years if the rate is $3 \%$. To see this, we calculate the present value of $\$ 600$ in 5 years, $600 e^{-0.03 * 5} \approx \$ 516.42$. Since this amount is greater than $\$ 500$, it is the better deal.
On the other hand, if the interest rate bumps up to $4 \%$, then it is better to stick with the $\$ 500$ today. This follows because the present value of $\$ 600$ in 5 years with the new interest rate is $600 e^{-0.04 * 5} \approx \$ 491.24$. Since this value is less than $\$ 500$, it is not the better deal. Another way to see this is to compute the value of $\$ 500$ compounded continuously for 5 years at the new rate: $500 e^{0.04 * 5} \approx \$ 610.70$ which is greater than $\$ 600$.
(e) This is a tricky one. We need to compute the present value of each yearly payment and then add them together to see how they compare with $\$ 2$ million. The first payment starts the clock (time $t=0$ ). We obtain

$$
\begin{aligned}
500,000+500,000 e^{-0.04 \cdot 1}+500,000 e^{-0.04 \cdot 2}+500,000 e^{-0.04 \cdot 3} & = \\
500,000\left(1+e^{-0.04}+e^{-0.08}+e^{-0.12}\right) & \approx \$ 1,885,413.11
\end{aligned}
$$

The "loss" on our winnings is 2 million minus the present value or a whopping $\$ 114,586.89$.

