Math 374, Dynamical Systems, Fall 2017
 The Quadratic Map Q_{c} is Topologically Conjugate to the Shift Map σ

1 The Set Up

Recall that $Q_{c}(x)=x^{2}+c$ is the quadratic map and that $p_{+}=\frac{1}{2}(1+\sqrt{1-4 c})$ is the larger of the two fixed points. If $c<-2$, a symmetrical piece of the bottom of the graph of Q_{c} lies outside the square with vertices $\left(p_{+}, p_{+}\right),\left(-p_{+}, p_{+}\right),\left(-p_{+},-p_{+}\right)$and $\left(p_{+},-p_{+}\right)$. This follows because $Q_{c}(0)=c<-p_{+}$ for $c<-2$.

The point $-p_{+}$maps to p_{+}on the first iterate and is thus eventually fixed. There are two preimages of $-p_{+}$, denoted α and $-\alpha$, which are eventually fixed at p_{+}after two iterates. We compute that $\alpha=\sqrt{-c-p_{+}}$, which is real because $c<-p_{+}$. The open interval $A_{1}=(-\alpha, \alpha)$ maps below $-p_{+}$on the first iterate, then above p_{+}on the next iterate, and then off to infinity as n gets larger. Consequently, we think of A_{1} as the trapdoor; any point whose orbit eventually lands in A_{1} will escape to ∞.

Let us define the following important closed intervals:

$$
\begin{aligned}
I & =\left[-p_{+}, p_{+}\right] \\
I_{0} & =\left[-p_{+},-\alpha\right] \\
I_{1} & =\left[\alpha, p_{+}\right]
\end{aligned}
$$

Note that $I=I_{0} \cup A_{1} \cup I_{1}$. The open interval A_{1} and all of its pre-images A_{n} contain all the points that escape to ∞. The sum of the length of these intervals equals the length of I. We are interested in the set of points Λ that remain in I under iteration of Q_{c}. As discussed in class,

$$
\Lambda=\left\{x \in I: Q_{c}^{n}(x) \in I \forall n\right\}
$$

is a Cantor set - a nonempty, closed, and totally disconnected set.

2 The Itinerary Map

Definition 2.1 (The Itinerary Map) Suppose $x \in I$. The itinerary of x is the infinite sequence

$$
S(x)=\left(s_{0} s_{1} s_{2} s_{3} \ldots\right) \quad \text { where } \begin{cases}s_{j}=0 & \text { if } Q_{c}^{j}(x) \in I_{0}, \text { and } \\ s_{j}=1 & \text { if } Q_{c}^{j}(x) \in I_{1} .\end{cases}
$$

Here, we define $Q_{c}^{0}(x)=x$, so that s_{0} reveals which interval x starts in. Since $x \in \Lambda$, we know that every iterate will stay in I and can never land in A_{1}. Thus, $Q_{c}^{j}(x)$ is always in either I_{0} or I_{1} for any j. This means that the sequence defined by the itinerary map will be an infinite sequence of 0's and 1's. In other words, S is function from Λ to Σ_{2}, the space of sequences of 0's and 1's. The reason that S is called the itinerary map is that each entry in the sequence $S(x)$ will tell us whether the corresponding iterate of x is to the left of the trapdoor (0) or to the right (1).

Example 2.2 The following itineraries can be calculated easily with a good web diagram:

$$
\begin{aligned}
S\left(p_{+}\right) & =(11111 \cdots) \\
S\left(-p_{+}\right) & =(01111 \cdots) \\
S(\alpha) & =(10111 \cdots) \\
S(-\alpha) & =(00111 \cdots) \\
S\left(p_{-}\right) & =(00000 \cdots)
\end{aligned}
$$

Key Observation: Note that the dynamical behavior for each x-value shown (under Q_{c}) is identical to the dynamical behavior of the corresponding sequence $S(x)$ under the shift map. For example, p_{+}is fixed under Q_{c}, while its itinerary $S\left(p_{+}\right)=(111 \cdots)$ is fixed under the shift map. The point α is eventually fixed at p_{+}after two iterates, while its itinerary $S(\alpha)=(10111 \cdots)$ is eventually fixed at $(111 \cdots)$ after two iterates of the shift map. This will always be the case as the map Q_{c} on Λ is actually topologically conjugate to the shift map σ on Σ_{2}. In other words, the dynamics of Q_{c} on the Cantor set Λ are equivalent to the dynamics of the shift map σ on Σ_{2} ! This is a truly remarkable fact demonstrating the usefulness of symbolic dynamics. We can understand the complicated dynamics of Q_{c} by using a simple shift map on the space of sequences of 0 's and 1 's.

Theorem 2.3 If $c<-2$, then Q_{c} on Λ is topologically conjugate to the shift map σ on Σ_{2}. The itinerary map $S: \Lambda \mapsto \Sigma_{2}$ is the conjugacy.

3 Proof of Theorem 2.3

There are two items we must show:

1. $S \circ Q_{c}=\sigma \circ S$, and
2. S is a homeomorphism.

Proof of 1. Let $x \in \Lambda$ and suppose that x has itinerary $S(x)=\left(s_{0} s_{1} s_{2} s_{3} \cdots\right)$. By definition of S,

$$
x \in I_{s_{0}}, \quad Q_{c}(x) \in I_{s_{1}}, \quad Q_{c}^{2}(x) \in I_{s_{2}}, \quad Q_{c}^{3}(x) \in I_{s_{3}}, \quad \text { etc. },
$$

where $s_{i} \in\{0,1\}$. Now consider the itinerary of $Q_{c}(x)$. This is the itinerary of the first iterate of x. Since $Q_{c}(x)$ starts in $I_{s_{1}}$, the first sequence in the itinerary $S\left(Q_{c}(x)\right)$ is s_{1}. Then, since $Q_{c}^{2}(x) \in I_{s_{2}}$, the next iterate of $Q_{c}(x)$ lies in the interval $I_{s_{2}}$, and thus the next sequence in the itinerary of $Q_{c}(x)$ is s_{2}. Continuing in this fashion, we have

$$
S\left(Q_{c}(x)\right)=\left(s_{1} s_{2} s_{3} \cdots\right)=\sigma(S(x))
$$

which proves item 1. In essence, the itinerary map S is constructed to follow the orbit of points under Q_{c}. So the itinerary of $Q_{c}(x)$ is found by simply ignoring the first element in the itinerary of x, which is precisely what the shift map σ does.

Proof of 2. This is the hard part. We must show that the itinerary map S is one-to-one, onto, continuous and has a continuous inverse.
S is one-to-one: Suppose that $S(x)=S(y)$ for some $x, y \in \Lambda$. By contradiction, suppose that $x \neq y$. Without loss of generality, we may assume that $x<y$ and focus our attention on the interval $[x, y]$.

Since $S(x)=S(y), x$ and y have the same itineraries, so $Q_{c}^{n}(x)$ and $Q_{c}^{n}(y)$ lie in the same subinterval I_{0} or I_{1} for all n. Note that Q_{c} is a one-to-one function on either I_{0} or I_{1} (since we only have less than half the parabola on either of these intervals). Using the fact that the composition of one-to-one functions is still one-to-one, we know that Q_{c}^{n} maps $[x, y]$ one-to-one onto $\left[Q_{c}^{n}(x), Q_{c}^{n}(y)\right]$. This means that for each $n,\left[Q_{c}^{n}(x), Q_{c}^{n}(y)\right] \subset I_{0}$ or $\left[Q_{c}^{n}(x), Q_{c}^{n}(y)\right] \subset I_{1}$ (everything between the endpoints x and y must map injectively between the endpoints $Q_{c}^{n}(x)$ and $\left.Q_{c}^{n}(y)\right)$. But this means that the entire interval $[x, y] \subset \Lambda$, which contradicts the fact that Λ is totally disconnected.
S is onto: For this part we need to use the Nested Interval Theorem:
Theorem 3.1 (Nested Interval Theorem) Suppose $I_{n}=\left[a_{n}, b_{n}\right]$ is a sequence of closed intervals with

$$
I_{1} \supset I_{2} \supset I_{3} \supset \cdots \supset I_{n} \supset I_{n+1} \supset \cdots
$$

and that $\lim _{n \rightarrow \infty} b_{n}-a_{n}=0$. Then, there exists a unique point $p \in I_{n} \forall n$. In other words,

$$
\bigcap_{n=1}^{\infty} I_{n}=\{p\}
$$

We also need to use the following notation for preimages of Q_{c}. Let $J \subset I$. Then

$$
\begin{aligned}
Q_{c}^{-1}(J) & =\left\{x \in I: Q_{c}(x) \in J\right\} \\
& =\text { all points that are mapped into } J \text { by } Q_{c}, \\
Q_{c}^{-n}(J) & =\left\{x \in I: Q_{c}^{n}(x) \in J\right\} \\
& =\text { all points that are mapped into } J \text { by } Q_{c}^{n} .
\end{aligned}
$$

Key Fact: If J is a closed interval, then $Q_{c}^{-1}(J)$ is two closed (and smaller) subintervals, one of which is in I_{0} and the other of which is in I_{1} (see Figure 9.6) below.

Fig. 9.6 The preimage of a closed interval J is a pair of closed intervals, one in I_{0} and one in I_{1}.

Suppose that $s=\left(s_{0} s_{1} s_{2} \cdots\right)$ is an arbitrary sequence in Σ_{2}. To show that S is onto, we must show that there exists an $x \in \Lambda$ such that $S(x)=s$. We will do this by constructing the point x as the infinite intersection of closed sets.

Define

$$
\begin{aligned}
I_{s_{0}} & =\left\{x \in I: x \in I_{s_{0}}\right\} \\
I_{s_{0} s_{1}} & =\left\{x \in I: x \in I_{s_{0}} \text { and } Q_{c}(x) \in I_{s_{1}}\right\} \\
I_{s_{0} s_{1} s_{2}} & =\left\{x \in I: x \in I_{s_{0}}, Q_{c}(x) \in I_{s_{1}}, \text { and } Q_{c}^{2}(x) \in I_{s_{2}}\right\} \\
& \vdots \\
I_{s_{0} s_{1} s_{2} \cdots s_{n}} & =\left\{x \in I: x \in I_{s_{0}}, Q_{c}(x) \in I_{s_{1}}, \ldots Q_{c}^{n}(x) \in I_{s_{n}}\right\}
\end{aligned}
$$

The set $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ consists of all the points in I whose first $n+1$ entries in their itinerary agree with the first $n+1$ entries of s. For example, if $s=(0110 \cdots)$, then $I_{s_{0} s_{1} s_{2} s_{3}}=I_{0110}$ consists of all the points that start in I_{0}, with their first and second iterates in I_{1}, and third iterate in I_{0}.

This set can be found by repeatedly finding pre-images under Q_{c} and taking their intersection. Specifically, we have that

$$
I_{s_{0} s_{1} s_{2} \cdots s_{n}}=I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1}}\right) \cap Q_{c}^{-2}\left(I_{s_{2}}\right) \cap \cdots \cap Q_{c}^{-n}\left(I_{s_{n}}\right)
$$

by definition of Q_{c}^{-j}. This shows that $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ is a closed set since it is the finite intersection of closed intervals. Moreover, because of the key fact above, we have

$$
I_{s_{0}} \supset I_{s_{0} s_{1}} \supset I_{s_{0} s_{1} s_{2}} \supset \cdots \supset I_{s_{0} s_{1} s_{2} \cdots s_{n-1}} \supset I_{s_{0} s_{1} s_{2} \cdots s_{n}},
$$

a nested intersection. The length of $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ is approaching 0 as $n \rightarrow \infty$ because $Q_{c}^{-n}\left(I_{s_{n}}\right)$ is a smaller and smaller interval as $n \rightarrow \infty$ (Q_{c} is expanding so Q_{c}^{-1} is contracting). Applying the Nested Interval Theorem, we let

$$
x=\bigcap_{n=0}^{\infty} I_{s_{0} s_{1} s_{2} \cdots s_{n}} .
$$

Then $x \in \Lambda$ because the nth iterate of x under Q_{c} lies in $I_{s_{n}}$ for each n, so the orbit never escapes through the trapdoor. In addition, we have that $S(x)=\left(s_{0} s_{1} s_{2} \cdots s_{n} \cdots\right)=s$ by construction, since $Q_{c}^{n}(x) \in I_{s_{n}} \forall n$. This proves that S is onto.
S is continuous: Pick $x \in \Lambda$ and suppose that $S(x)=\left(s_{0} s_{1} s_{2} \cdots s_{n} \cdots\right) \in \Sigma_{2}$. Let $\epsilon>0$ be given and pick $n \in \mathbb{N}$ such that $1 / 2^{n}<\epsilon$. We must find a $\delta>0$ such that $|x-y|<\delta$ implies that $d(S(x), S(y))<\epsilon$, where d is the standard metric on Σ_{2}.

Since $S(x)=\left(s_{0} s_{1} s_{2} \cdots s_{n} \cdots\right), x \in I_{s_{0} s_{1} \cdots s_{n}}$, which is some small, closed set in I. Choose δ so that if $y \in \Lambda$ and $|x-y|<\delta$, then $y \in I_{s_{0} s_{1} \cdots s_{n}}$ as well. This is clearly possible if x is in the interior of $I_{s_{0} s_{1} \cdots s_{n}}$, because this is a closed interval with some finite (albeit small) length. We then choose δ so that the δ-neighborhood about x lies inside $I_{s_{0} s_{1} \cdots s_{n}}$. If x happens to be an endpoint of $I_{s_{0} s_{1} \cdots s_{n}}$ (which means it will eventually be fixed at p_{+}under iteration), then points to one side of x will eventually escape to ∞, so we only focus on the intersection of a δ-neighborhood about x with $I_{s_{0} s_{1} \cdots s_{n}}$. Again, it is possible to choose δ sufficiently small to ensure that this intersection lies within $I_{s_{0} s_{1} \cdots s_{n}}$. Thus, if $y \in \Lambda$ and $y \in I_{s_{0} s_{1} \cdots s_{n}}$, then the first $n+1$ entries of $S(y)$ will agree with the first $n+1$ entries of $S(x)$. By the Proximity Theorem, this means that $d(S(x), S(y)) \leq 1 / 2^{n}<\epsilon$, as desired.
S^{-1} is continuous: This proof is left to you as a HW exercise. :)

