```
> Some symbolic calculations used in the paper "Four-body co-
    circular central configurations" by Josep M. Cors and Gareth E.
    Roberts, to appear in Nonlinearity.
\(\stackrel{ }{7}\)
\(>\operatorname{factor}\left(r_{23}^{2} \cdot r_{24}^{2} \cdot\left(r_{13}^{3}-r_{14}^{3}\right)-r_{13}^{2} \cdot r_{14}^{2} \cdot\left(r_{24}^{3}-r_{23}^{3}\right)-r_{13}^{2} \cdot r_{23}^{2} \cdot\left(r_{24}^{3}-r_{14}^{3}\right)+r_{14}^{2} \cdot r_{24}^{2} \cdot\left(r_{13}^{3}-\right.\right.\)
    \(\left.r_{23}^{3}\right)\) )
\(\left(r_{13}-r_{24}\right)\left(r_{13}^{2} r_{23}^{2} r_{24}^{2}+r_{13}^{2} r_{14}^{2} r_{24}^{2}+r_{13} r_{23}^{2} r_{14}^{3}+r_{13} r_{14}^{2} r_{23}^{3}+r_{24} r_{23}^{2} r_{14}^{3}+r_{24} r_{14}^{2} r_{23}^{3}\right)\)
> This confirms the factorization given in the proof of Lemma 3.2.
```


Trapezoid: Rigorous Bound, y > 9/10

```
[> with(Groebner) :
\(\left[>T:=\left(y^{2}+x\right)^{\frac{3}{2}} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}:\right.\)
\(\left[>\right.\) eq \(1:=z^{3} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}:\)
> eq \(2:=x+y^{2}-z^{2}:\)
\(>\quad b d 1:=\operatorname{simplify}\left(1000 \cdot \operatorname{subs}\left(y=\frac{9}{10}\right.\right.\), eq 1\(\left.)\right):\)
\([>\) bd \(2:=\operatorname{simplify}(100 \cdot \operatorname{subs}(y=\)
\([>\) NList \(:=[b d 1, b d 2]:\)
\({ }^{2}>\)
\(\gg B d:=\operatorname{Basis}(\operatorname{NList}, \operatorname{plex}(x, z)):\)
\(>\operatorname{factor}(B d[1])\)
\(1404461511-989441000 z^{3}+1968300000 z^{5}-2501709300 z^{2}\)
\[
\begin{equation*}
+3088530000 z^{4}-1271000000 z^{6}-2430000000 z^{7}+1000000000 z^{9} \tag{1.1}
\end{equation*}
\]
> fsolve(Bd[1])
\(-1.266884139\)
\(s:=\operatorname{sturmseq}(B d[1], z):\)
\(>\operatorname{sturm}(s, z, 0,2)\);
0

\section*{Finding the minimum on the trapezoid curve \(\mathrm{T}(\mathrm{x})\)}
[> with(Groebner) :
```

> T:=(\mp@subsup{y}{}{2}+x\mp@subsup{)}{}{\frac{3}{2}}\cdot(2\cdot\mp@subsup{y}{}{3}-\mp@subsup{x}{}{3}-1)-\mp@subsup{y}{}{3}-\mp@subsup{x}{}{3}\cdot\mp@subsup{y}{}{3}+2\cdot\mp@subsup{x}{}{3}:
> Tx:=(\mp@subsup{y}{}{2}+x\mp@subsup{)}{}{\frac{1}{2}}\cdot(2\cdot\mp@subsup{y}{}{3}-3\cdot\mp@subsup{x}{}{3}-2\cdot\mp@subsup{x}{}{2}\cdot\mp@subsup{y}{}{2}-1)-2\cdot\mp@subsup{x}{}{2}\cdot(\mp@subsup{y}{}{3}-2):
> t1:= 焐}\cdot\mp@code{(2\cdot\mp@subsup{y}{}{3}-\mp@subsup{x}{}{3}-1)-\mp@subsup{y}{}{3}-\mp@subsup{x}{}{3}\cdot\mp@subsup{y}{}{3}+2\cdot\mp@subsup{x}{}{3}:
> t2:=z
> t3:=x+ y - z
> f:= expand}((x+\mp@subsup{y}{}{2}\mp@subsup{)}{}{3}\cdot(2\cdot\mp@subsup{y}{}{3}-\mp@subsup{x}{}{3}-1\mp@subsup{)}{}{2}-(\mp@subsup{y}{}{3}+\mp@subsup{x}{}{3}\cdot\mp@subsup{y}{}{3}-2\cdot\mp@subsup{x}{}{3}\mp@subsup{)}{}{2})
> g:= expand}((x+\mp@subsup{y}{}{2})\cdot(2\cdot\mp@subsup{y}{}{3}-3\cdot\mp@subsup{x}{}{3}-2\cdot\mp@subsup{x}{}{2}\cdot\mp@subsup{y}{}{2}-1\mp@subsup{)}{}{2}-4\cdot\mp@subsup{x}{}{4}\cdot(\mp@subsup{y}{}{3}-2\mp@subsup{)}{}{2})
PList:= [t1, t2, t3]:
> B1 := Basis(PList, plex (z, x, y)):
> tr1:= simplify (\frac{B1[1]}{\mp@subsup{y}{}{3}}):
tr1 - res2
0
fsolve(tr1)
-0.8930736485, 0.9080259298, 1.344741734
> B2 := Basis(PList, plex (z, y, x)):
tr2:= simplify }(\frac{B2[1]}{\mp@subsup{x}{}{2}\cdot(x-1)\cdot(\mp@subsup{x}{}{2}+x+1)})
> fsolve(tr2)
-1.716120172, -0.4974351142, 0.6035381491
s1:= sturmseq(tr1, y):s2:= sturmseq(tr2, x):
sturm(s1, y, 0, 1);
1
1
sturm(s2, x, 0, 1);
(2.5)
This shows that there is precisely one physical solution to
tau'(x) = O given
by x = 0.6035381491 and y = 0.9080259298.
Below are the calculations obtained by squaring both sides of T
= 0 and T_x = 0.
=> PList:= [f,g]:
> Blex:= Basis(PList, plex(x, y)):
> factor(Blex[1]):
[> res:= resultant(f,g,x):

```
```

 > factor(res):
 > res 1:= 15872 y 45 - 247353 y2 +1799812 y9 - 8099516 y 36 +25109720 y 3
 -56519861 y0}+94946448 \mp@subsup{y}{}{27}-120711684y\mp@subsup{y}{}{24}+116849376\mp@subsup{y}{}{21
 -86015143 y 18}+47564748 y y - 19074048 y 12 +5169384 y 9 - 853979 y %
 +77824 y - 4096:
 > fsolve(res1)
 0.9292859667
    ```

```

 -3109243 y\mp@subsup{y}{}{4}+622144 y+}+1205860 y 18-1230512 y 15 +518263 y 12
 -102604 y 9}+7504\mp@subsup{y}{}{6}+216\mp@subsup{y}{}{3}+27
 > fsolve(res2)
 -0.8930736485, 0.9080259298, 1.344741734
 > fy:= subs (}y=0.9080259298,g)
 > fsolve(fy);
 -0.3430330869, 0.3172090634, 0.6035381491
 > fytest:= subs (}y=0.9292859667,g)
 > fsolve(fytest);
 -0.3871957355, 0.3495940365, 0.6146710034
 $>$ Checking all the found solutions in the region shows that only $\mathrm{x}=.6035381491, \mathrm{y}=.9080259298$ satisfies both $\mathrm{T}=0$ and $\mathrm{T} \mathbf{x}=$ 0.
\square
subs({x=0.6035381491, y=0.9080259298},Tx);
1.1 10-9
$\operatorname{subs}(\{x=0.3172090634, y=0.9080259298\}, T x)$; 0.5036402591
$\operatorname{subs}(\{x=0.3495940365, y=0.9292859667\}, T x)$;
0.5854117993
$>\operatorname{subs}(\{x=0.6146710034, y=0.9292859667\}, T)$;

$$
\begin{equation*}
0.1455827582 \tag{2.12}
\end{equation*}
$$

Trapezoid: Mass m is an increasing function of x

[> with(Groebner) :
$\left[>T:=\left(y^{2}+x\right)^{\frac{3}{2}} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}:\right.$
$\left[>T x:=\left(\frac{3}{2}\right) \cdot\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right):\right.$

$$
\begin{align*}
& \mid>T x 1:=\left(\frac{3}{2}\right) \cdot z \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right): \\
& {\left[>T y:=3 \cdot y \cdot\left(\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right):\right.} \\
& >\text { Ty } 1:=3 \cdot y \cdot\left(z \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right): \\
& \text { > eq } 1:=z^{3} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}: \\
& {\left[>\text { eq } 2:=\left(1-y^{3}\right) \cdot\left(2 \cdot y^{3}+x^{3}\right) \cdot T y 1+3 \cdot x \cdot y^{2} \cdot\left(1-x^{3}\right) \cdot T x 1:\right.} \\
& \text { > eq3: }=x+y^{2}-z^{2}: \\
& \text { > PList:= [eq1, eq2, eq3]: } \\
& \text { [} \quad B:=\operatorname{Basis}(\operatorname{PList}, \operatorname{plex}(z, y, x)): \\
& \text { >> msder }:=\text { simplify }\left(\frac{B[1]}{x^{4} \cdot(x-1)^{2} \cdot\left(x^{2}+x+1\right)^{2}}\right) \text {; } \\
& \text { msder }:=12252303-388072944 x^{3}+12252303 x^{48}+11679662896 x^{9} \tag{3.1}\\
& +2198862536 x^{6}+34333498404 x^{12}+709488857616 x^{15} \\
& +1980505257336 x^{18}+3753406853296 x^{21}+4259444325914 x^{24} \\
& +3753406853296 x^{27}+1980505257336 x^{30}+709488857616 x^{33} \\
& +34333498404 x^{36}+11679662896 x^{39}+2198862536 x^{42} \\
& -388072944 x^{45} \\
& \text { > fsolve(msder); } \\
& -1.709770733,-0.5848737381 \tag{3.2}\\
& \text { This shows that there is no intersection between } T(x, y)=0 \text { and } \tag{3.3}\\
& \text { the numerator of } \\
& \text { the partial derivative of } m \text { with respect to } x \text {. Consequently, } m \text { ' } \\
& \text { (x) > } 0 \text { except at } \\
& \mathrm{x}=0 \text { and } \mathrm{x}=1 \text {. }
\end{align*}
$$

Trapezoid: Circumradius is an increasing function of X

[$>$ with(Groebner) :
$\left[>T:=\left(y^{2}+x\right)^{\frac{3}{2}} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}:\right.$
$\left[>T x:=\left(\frac{3}{2}\right) \cdot\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right):\right.$

$$
\begin{aligned}
& \mid>T x 1:=\left(\frac{3}{2}\right) \cdot z \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right): \\
& >T y:=3 \cdot y \cdot\left(\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right): \\
& \text { Ty1 }:=3 \cdot y \cdot\left(z \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right): \\
& e q 1:=z^{3} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}: \\
& e q 2:=y \cdot\left(2 \cdot y^{2}+2 \cdot x \cdot y^{2}+x^{2}-1\right) \cdot T y 1-\left(8 \cdot y^{4}-2 \cdot(1-x)^{2} \cdot\left(x+2 \cdot y^{2}\right)\right) \cdot T x 1: \\
& >\text { eq3: }=x+y^{2}-z^{2} \text { : } \\
& \text { > PList:= [eq1, eq2, eq3]: } \\
& \rightarrow B:=\operatorname{Basis}(\operatorname{PList}, \operatorname{plex}(z, x, y)): \\
& >\text { factor }(B[1]) \text { : } \\
& >\text { rcder }:=\text { simplify }\left(\frac{B[1]}{y^{4} \cdot(y-1) \cdot\left(y^{2}+y+1\right)}\right) \text {; } \\
& \text { rcder }:=301754331 y^{56}+1296+91539 y^{4}-4867806564 y^{47}+10733904 y^{60} \\
& +8305068 y^{13}-2806524093 y^{24}-1278 y^{7}-11796 y^{2}+12636 y^{3} \\
& +4240796649 y^{50}+7010912685 y^{30}+3409455612 y^{25} \\
& +28398879276 y^{35}+1620876 y^{11}-251552 y^{6}-2293131 y^{10} \\
& +296196 y^{8}-89098 y^{9}+8660727447 y^{26}-5272605084 y^{49} \\
& +7675033045 y^{36}-9244521774 y^{29}-513419601 y^{54}-73431247 y^{18} \\
& -580401 y^{16}+27296461534 y^{45}-32085603117 y^{42}+578922216 y^{52} \\
& -36720479115 y^{38}-77196 y^{5}-5574620427 y^{32}+3853302060 y^{51} \\
& -18716289 y^{14}-4003797081 y^{44}+1984308056 y^{27}-13436554879 y^{48} \\
& -834624 y^{61}+18144 y^{62}-16151978114 y^{33}+52009534917 y^{40} \\
& -3146087532 y^{23}+16408243528 y^{39}+23062367382 y^{41} \\
& +19016171211 y^{46}+422672709 y^{20}-17008488 y^{58}+11813703 y^{12} \\
& -19798812 y^{57}-45302568 y^{15}+928142026 y^{21}-1579155150 y^{53} \\
& +74343228 y^{55}-24577128 y^{59}-11203627599 y^{28}+12694871178 y^{31} \\
& -209832495 y^{22}+6870658455 y^{34}-37831461708 y^{37}+36978546 y^{17} \\
& -40072132422 y^{43}-44600322 y^{19} \\
& \text { [}>\operatorname{sort}(\text { rcder, } y) \text {; } \\
& 18144 y^{62}-834624 y^{61}+10733904 y^{60}-24577128 y^{59}-17008488 y^{58} \\
& -19798812 y^{57}+301754331 y^{56}+74343228 y^{55}-513419601 y^{54} \\
& -1579155150 y^{53}+578922216 y^{52}+3853302060 y^{51}+4240796649 y^{50} \\
& -5272605084 y^{49}-13436554879 y^{48}-4867806564 y^{47} \\
& +19016171211 y^{46}+27296461534 y^{45}-4003797081 y^{44}
\end{aligned}
$$

$$
-40072132422 y^{43}-32085603117 y^{42}+23062367382 y^{41}
$$

$$
+52009534917 y^{40}+16408243528 y^{39}-36720479115 y^{38}
$$

$$
-37831461708 y^{37}+7675033045 y^{36}+28398879276 y^{35}
$$

$$
+6870658455 y^{34}-16151978114 y^{33}-5574620427 y^{32}
$$

$$
+12694871178 y^{31}+7010912685 y^{30}-9244521774 y^{29}
$$

$$
-11203627599 y^{28}+1984308056 y^{27}+8660727447 y^{26}
$$

$$
+3409455612 y^{25}-2806524093 y^{24}-3146087532 y^{23}-209832495 y^{2}
$$

$$
+928142026 y^{21}+422672709 y^{20}-44600322 y^{19}-73431247 y^{18}
$$

$$
+36978546 y^{17}-580401 y^{16}-45302568 y^{15}-18716289 y^{14}
$$

$$
+8305068 y^{13}+11813703 y^{12}+1620876 y^{11}-2293131 y^{10}-89098 y^{9}
$$

$$
+296196 y^{8}-1278 y^{7}-251552 y^{6}-77196 y^{5}+91539 y^{4}+12636 y^{3}
$$

$$
\begin{equation*}
-11796 y^{2}+1296 \tag{4.3}
\end{equation*}
$$

> fsolve(rcder);
$-0.9192613441,-0.8835259921,-0.8806859995,-0.7897153641$,
$0.6309394391,1.501181561,20.91822519,21.93871288$
[$>s:=\operatorname{sturmseq}(r c d e r, y)$:
$\operatorname{sturm}\left(s, y, \frac{9}{10}, 1\right)$;
$\operatorname{subs}(\{x=0, y=1, z=1\}$, PList $) ;$

$$
\begin{equation*}
[0,0,0] \tag{4.4}
\end{equation*}
$$

$>\operatorname{subs}(\{x=1, y=1, z=\operatorname{sqrt}(2)\}$, LList $) ;$

$$
\begin{equation*}
[0,96 \sqrt{2}-48,0] \tag{4.5}
\end{equation*}
$$

This shows that there is no intersection between $T(x, y)=0$ and the numerator of
the partial derivative of $r_{\text {_ }} \mathrm{c}^{\wedge} 2$ with respect to x .
Consequently, $r_{\text {_c' }}(x)$ > 0 except at
$\mathrm{x}=0$.
Note: There does happen to be a solution to the above system but with a negatize z value, so it can be ignored.
$-\operatorname{sqrt}\left(0.2038308484+0.6309394391^{2}\right)$;

$$
0.7758320851
$$

$\operatorname{subs}(\{x=0.2038308484, y=0.6309394391, z=-0.7758320851\}$, PList $)$;

$$
\begin{equation*}
\left[1.10^{-11},-0 .,-1.10^{-10}\right] \tag{4.8}
\end{equation*}
$$

Trapezoid: $\theta 14$ is a decreasing function of \mathbf{x}

$$
\begin{align*}
& \text { 〈> with(Groebner) : } \\
& {\left[>T:=\left(y^{2}+x\right)^{\frac{3}{2}} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}:\right.} \\
& {\left[>T x:=\left(\frac{3}{2}\right) \cdot\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right):\right.} \\
& {\left[>T x 1:=\left(\frac{3}{2}\right) \cdot z \cdot\left(2 \cdot y^{3}-3 \cdot x^{3}-2 \cdot x^{2} \cdot y^{2}-1\right)-3 \cdot x^{2} \cdot\left(y^{3}-2\right):\right.} \\
& {\left[>T y:=3 \cdot y \cdot\left(\left(y^{2}+x\right)^{\frac{1}{2}} \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right)\right. \text { : }} \\
& {\left[>\text { Ty } 1:=3 \cdot y \cdot\left(z \cdot\left(4 \cdot y^{3}-x^{3}-1+2 \cdot x \cdot y\right)-y \cdot\left(x^{3}+1\right)\right):\right.} \\
& \rightarrow \text { eq } 1:=z^{3} \cdot\left(2 \cdot y^{3}-x^{3}-1\right)-y^{3}-x^{3} \cdot y^{3}+2 \cdot x^{3}: \\
& >e q 2:=\left(-2 \cdot y^{2}-2 \cdot x \cdot y^{2}-x^{2}+1\right) \cdot T y 1-2 \cdot y(x+1)^{2} \cdot T x 1 \text { : } \\
& {\left[>\text { eq3 }:=x+y^{2}-z^{2}:\right.} \\
& \text { [> PList }:=\text { [eq1, eq2, eq3]: } \\
& \rightarrow B:=\operatorname{Basis}(\text { PList, } \operatorname{plex}(z, y, x)): \\
& >\text { factor }(B[1]) \text { : } \\
& \begin{array}{l}
\gg r:=\operatorname{simplify}\left(\frac{B[1]}{x^{2} \cdot(x+1) \cdot\left(x^{2}+x+1\right)^{2} \cdot(x-1)^{3}}\right): \\
=> \\
\gg \operatorname{sort}(r, x) ; \\
63 x^{42}-768 x^{41}+2424 x^{40}+7166 x^{39}-48840 x^{38}+12768 x^{37}+395941 x^{36}
\end{array} \tag{5.1}\\
& -211872 x^{35}-2405712 x^{34}-751028 x^{33}+12953520 x^{32}+27357408 x^{31} \\
& +14860695 x^{30}+82331232 x^{29}+961338312 x^{28}+4780976354 x^{27} \\
& +15280798344 x^{26}+36424232640 x^{25}+68944782213 x^{24} \\
& +107067631296 x^{23}+138590661792 x^{22}+150912729512 x^{21} \\
& +138590661792 x^{20}+107067631296 x^{19}+68944782213 x^{18} \\
& +36424232640 x^{17}+15280798344 x^{16}+4780976354 x^{15} \\
& +961338312 x^{14}+82331232 x^{13}+14860695 x^{12}+27357408 x^{11} \\
& +12953520 x^{10}-751028 x^{9}-2405712 x^{8}-211872 x^{7}+395941 x^{6} \\
& +12768 x^{5}-48840 x^{4}+7166 x^{3}+2424 x^{2}-768 x+63 \\
& >\text { fsolve }(r) \text {; } \\
& -1.954190225,-0.5117209099 \\
& 0 \tag{5.3}
\end{align*}
$$

(5.2)

This shows that there is no intersection between $T(x, y)=0$ and the numerator of the partial derivative of ($\left.y^{\wedge} 2 / r _c^{\wedge} 2\right)$ with respect to x. Consequently, $d\left(y / r _c\right) / d x<0$ except at $x=1$ (square) where it equals 0 .

