Math and Music: Exploring the Connections

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross

Classroom Revisited 2008
 Continuing Education Day

College of the Holy Cross April 5, 2008

Outline

(1) Music as Science
(2) Math as Art
(3) Rhythm

4 Symmetry in Music
(5) Change Ringing

Some Quotes

May not Music be described as the Mathematic of Sense, Mathematics as the Music of reason? The soul of each the same! Thus the musician feels Mathematic, the mathematician thinks Music, - Music the dream, Mathematic the working life, - each to receive its consummation from the other.
James Joseph Sylvester, 1865

Music is the arithmetic of sounds as optics is the geometry of light.
Claude Debussy, c. 1900

Wargarita mohlofophita.

Figure: The Quadrivium and the Trivium. Woodcut, 1504.

Quadrivium: Boethius (c. 480-524) Music, arithmetic, astronomy and geometry.

Music as Science

Early British Education

- Music taught as a science, although exams for B. Mus. and D.Mus. required a composition of music
- Gresham Professorships, London, 1596: music, 'physic', geometry and astronomy
- "he is to expound on 'canonics, or music'" (Description of the University Chair in mathematics at Oxford University in 1619)
- "Speculative is that kinde of musicke which by Mathematical helpes, seeketh out the causes, properties, and natures of soundes." - Thomas Morley, Plaine and easie introduction to music, 1597

Music as Science

I do present you with a man of mine,
Cunning in music and in mathematics,
To instruct her fully in those sciences,
Whereof, I know, she is not ignorant.
William Shakespeare, 1594

- Formalized, internationally accepted notation:

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

Béla Bartók, Mikrokosmos, No. 141, Subject and reflection

- Axiomatic development: Euclidean Geometry: Definitions and proofs lead to theorems and propositions
Music Theory: Scales, Harmony, Sequences, Progressions, Sonata-form
- Theorems and Rules:

Mathematics: Pythagorean Theorem, Infinitude of Prime Numbers, Fundamental Theorem of Calculus, Mandelbrot Set is Connected, $\sqrt{2}$ is irrational
Music: No parallel fifths or octaves, Dominant leads to the Tonic, Set Theory, Twelve-tone Method

- The Science of Sound: Why do some combination of notes sound better than others? The overtone series, Musical acoustics

$$
\text { Equal temperament } \longleftrightarrow 2^{1 / 12}
$$

- New Journal in 2007: Journal of Mathematics and Music: Mathematical and Computational Approaches to Music Theory, Analysis and Composition

Math as Art

But mathematics is the sister, as well as the servant, of the arts and is touched with the same madness and genius. Harold Marston Morse

- Child Prodigies (Mozart and Gauss)

$$
1+2+3+\cdots+98+99+100=?
$$

$$
101 \cdot 50=5050
$$

- Emotional, aesthetic connections (eg. Andrew Wiles discussing his proof of Fermat's Last Theorem)
- The Mozart Effect

Math as Art

Mathematicians/Musicians are everywhere!

- Edward Teller - physicist, pianist
- Dr. Albert Schweitzer - organist, renowned Bach expert
- Caroline Herschel - astronomer, singer of oratorios
- Donald Knuth - computer scientist, organist, composer
- Albert Einstein - physicist, violinist
- Manjul Bhargava - number theorist, master tabla player (classical Indian music)
- Noam Elkies - wicked smart Harvard mathematician, pianist, composer
- Half of the Holy Cross Math/CS Dept.
- Your Neighbor? Your Department? Your Kids?

Rhythm: Least Common Multiple

Music is the pleasure the human soul experiences from counting without being aware that it is counting. Gottfried Leibniz

Counting a 2 -against- 3 rhythmic cycle

$\operatorname{lcm}(2,3)=6$

Rhythm: Least Common Multiple

Counting a 3 -against-4

rhythmic cycle

$$
\operatorname{lcm}(3,4)=12
$$

Rhythm: Least Common Multiple

Music of Chopin

Rhythm: Least Common Multiple

Music of Chopin

$$
\operatorname{Icm}(a, b)=\frac{a b}{\operatorname{gcd}(a b)}
$$

Polyrhythmic Music

- Multiple rhythms at once
- African music often polyrhythmic with different drums and percussion instruments playing different rhythms simultaneously
- Classical Indian Music: tabla (pair of small hand drums). Drummers often play challenging combinations such as 11 beats in one hand and 12 in the other. Prime numbers play an important role.

Figure: A tabla

Figure: A triple dot in the Verdi Requiem.

Figure: A quadruple dot in the Verdi Requiem!

Rhythm: Geometric Series

Quadruple Dot \Longleftrightarrow Geometric Series

$$
\begin{gathered}
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{31}{16} \text { beats } \\
a_{0}+a_{0} r+a_{0} r^{2}+\cdots+a_{0} r^{n-1}=\frac{a_{0}\left(1-r^{n}\right)}{1-r}
\end{gathered}
$$

What length does an infintely dotted quarter note get?

Answer: 2 beats or 1 half note (infinite geometric series)

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\frac{1}{1-1 / 2}=2
$$

Symmetry in Music: Group Theory

How to get more music out of a little motif:
Translations (shifting graph vertically) \Longleftrightarrow Transpositions (shifting notes up or down)
Ex: Ballpark Music
Vertical Reflection (symmetry between right and left)

Retrograde (music same forward and backward)
Ex: Lean on Me
Horizontal Reflection (symmetry between top and bottom)
 Inversion (what goes up, must come down) Ex: Bach, Bach and more Bach

Symmetry in Music: Retrograde

Figure: Joseph Haydn, Piano Sonata No. 41, Hob. XVI/26, Minuet $\overline{=}$

Symmetry in Music: Retrograde

Figure: Johann Sebastian Bach, A Musical Offering

George F. Handel, Messiah, Hallelujah chorus (lose retrograde, form of tone painting)

Béla Bartók, Mikrokosmos, No. 141, Subject and reflection (inversion)

Symmetry in Music: Rotation

Figure: Paul Hindemith, Ludas tonalis, beginning and end.

Combining Symmetries

"I Got Rhythm" has
an AABA structure, and
We call these four equal sections $\mathrm{A}, \mathrm{A}, \mathrm{B}$, and A. Three of the sections are the same, and one is dif-
a two-bar tag at the end. ferent. Listen to the first section, and you'll be able

Figure: George Gershwin, I Got Rhythm, (transposition, retrograde and inversion, all in one song!)

Figure: Arnold Schoenberg, Piano Suite, Op. 25, opening of the Minuet and Trio

Symmetry in Music: Twelve-tone Method

Figure: Tone Rows and their symmetries

Change Ringing (Bell Ringing)

Figure: A typical church bell rung in the belfry.

Figure: Bell ringing practice in Stoke Gabriel parish church, south Devon, England.

Change ringing is a non-competitive and non-violent team activity that is highly stimulating intellectually and mildly demanding physically, and makes a beautiful sound. It develops mental and physical skills in a context of communal effort. The intense concentration required brings euphoric detachment that cleanses the mind of the day's petty demands and frustrations.
North American Guild of Change Ringers

Change Ringing: An Example

1234	1342	1423
2143	3124	4132
2413	3214	4312
2431	3241	4321
4231	2341	3421
4213	2314	3412
4123	2134	3142
1432	1243	1324
		1234

Canterbury Minimus (true extent on 4 bells)
There are $4!=24$ different possible rows. Each must be rung exactly once starting and ending with rounds (1 234).

Change Ringing: Rules

Rules to ring an extent on n bells:
(1) The first and last changes (rows) are rounds (1234‥n).
(2) Other than rounds, all of the other n ! changes occur exactly once.
(3) Between successive changes, no bell moves more than one position.
(4) No bell rests for more than 2 (sometimes relaxed further to 4) positions.
(5) Each working bell should do the same amount of "work" (obey the same overall pattern).
(6) Horizontal symmetry should be present in the extent to help the ringers learn the path of their respective bell. This is called the palindrome property.

Note: Rules 1-3 are mandatory for an extent while Rules 4-6 are optional though often satisfied.

Change Ringing and Mathematics

- A reordering of the numbers $1234 \cdots n$ is called a permutation.
- How many possible changes on n bells?

Answer: n !

- For n bells, how many "moves" are allowed?

$$
\begin{gathered}
n=2 \quad(12) \quad 1 \text { move } \\
n=3 \quad(12),(23) \quad 2 \text { moves } \\
n=4 \quad(12),(23),(34),(12)(34) \quad 4 \text { moves } \\
n=5 \quad(12),(23),(34),(45),(12)(34),(12)(45),(23)(45) \quad 7 \text { moves! }
\end{gathered}
$$

Change Ringing and Mathematics

$$
\begin{gathered}
n=6 \quad(12),(23),(34),(45),(56) \\
(12)(34),(12)(45),(12)(56),(23)(45),(23)(56),(34)(56) \\
(12)(34)(56) \quad 12 \text { moves }
\end{gathered}
$$

What's the pattern?

$$
1,2,4,7,12 \ldots
$$

Add one to our sequence:

$$
2,3,5,8,13 \ldots
$$

The Fibonnaci Sequence!

The number of allowable moves on n bells is $F_{n+1}-1$.

n	$n!$	Approximate Duration	Name
3	6	15 secs.	Singles
4	24	1 mins.	Minimus
5	120	5 mins.	Doubles
6	720	30 mins.	Minor
7	5,040	3 hrs.	Triples
8	40,320	24 hrs.	Major
9	362,880	9 days	Caters
10	$3,628,800$	3 months	Royal
11	$39,916,800$	3 years	Cinques
12	$479,001,600$	36 years	Maximus

Table: Approximate duration to ring an extent on n bells and the names given to such an extent. Compositions: Plain Bob Minimus, Grandshire Triples

Change Ringing: 3 bells

The two extents on 3 bells:

123	123
213	132
231	312
321	321
312	231
132	213
123	123

Note the simple zig-zag pattern of Bell 1 in the first extent, sweeping easily from position 1 to position 3 and back again. We say that Bell 1 is plain hunting. It only needs to do this once to complete the extent. In this case, we say that the bell is "not working." Notice that in the second extent, Bell 1 follows a similar zig-zag path except that this begins on the second change.

Change Ringing

Plain Bob Minimus (read down first, then hop to next column)

1234	1342	1423
2143	3124	4132
2413	3214	4312
4231	2341	3421
4321	2431	3241
3412	4213	2314
3142	4123	2134
1324	1432	1243
		1234

Let $a=(12)(34), b=(23), c=(34)$. The above sequence of 24 permutations can be "factored" as

$$
\left[(a b)^{3} a c\right]^{3}=[a b a b a b a c]^{3} \quad \text { Palindrome! }
$$

