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Definition
A central configuration (c.c.) is a configuration of bodies
(x1,x2, . . . ,xn),xi ∈ Rd such that the acceleration vector for each body
is a common scalar multiple of its position vector. Specifically, in the
Newtonian n-body problem with the center of mass at the origin, for
each index i ,

n∑
j 6=i

mimj(xj − xi)

||xj − xi ||3
+ λmixi = 0

for some scalar λ.

Finding c.c.’s is an algebra problem — no dynamics or derivatives.
The collinear c.c.’s correspond to d = 1, planar c.c.’s to d = 2,
spatial c.c.’s to d = 3. One can also study theoretically the case
d > 3.
Summing together the n equations above quickly yields∑

i mixi = 0.
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Properties of Central Configurations

Released from rest, a c.c. maintains the same shape as it heads
toward total collision (homothetic motion).

Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.
Any Kepler orbit (elliptic, hyperbolic, parabolic, ejection-collision)
can be attached to a c.c. to obtain a solution to the full n-body
problem.
For any collision orbit in the n-body problem, the colliding bodies
asymptotically approach a c.c.
Bifurcations in the topology of the integral manifolds (holding hc2

constant where h is the value of the energy and c is the length of
the angular momentum vector) occur precisely at values
corresponding to central configurations.
193 articles found on MathSciNet using a general search for
"central configurations"
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3-Body Collinear Configuration (Euler 1767)
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Equilateral Triangle (Lagrange 1772)

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 5 / 46



Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize)
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An Alternate Characterization of CC’s

Let rij = ||qi − qj || where qi denotes the position of the i-th body. The
Newtonian potential function is

U(q) =
n∑

i<j

mimj

rij

The equations of motion for the n-body problem are then given by

mi q̈i =
∂U
∂qi

, i ∈ {1,2, . . .n}

=
n∑

j 6=i

mimj(qj − qi)

r3
ij

Consequently, the i-th equation for a c.c. can be written as
∂U
∂qi

(x) + λmixi = 0.

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 8 / 46



An Alternate Characterization of CC’s

Let rij = ||qi − qj || where qi denotes the position of the i-th body. The
Newtonian potential function is

U(q) =
n∑

i<j

mimj

rij

The equations of motion for the n-body problem are then given by

mi q̈i =
∂U
∂qi

, i ∈ {1,2, . . .n}

=
n∑

j 6=i

mimj(qj − qi)

r3
ij

Consequently, the i-th equation for a c.c. can be written as
∂U
∂qi

(x) + λmixi = 0.

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 8 / 46



CC’s as critical points of U

The moment of inertia I(q) (w.r.t. the center of mass) is defined as

I(q) =
1
2

n∑
i=1

mi ||qi ||2.

Thus, the equations for a c.c. can be viewed as a Lagrange multiplier
problem (set I(q) = k ):

∇U(x) + λ∇I(x) = 0

where x = (x1, . . .xn).

In other words, a c.c. is a critical point of U subject to the constraint
I = k (the mass ellipsoid). This gives a useful topological approach to
studying central configurations (Smale, Conley, Meyer, McCord, etc.)
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A Simple Formula for λ

Recall U(q) =
n∑

i<j

mimj

rij
and I(q) =

1
2

n∑
i=1

mi ||qi ||2

Note that U is homogeneous of degree −1 and I is homogeneous of
degree 2. Taking the c.c. equation

∇U(x) + λ∇I(x) = 0

and dotting both sides with x yields (Euler’s Theorem for
Homogeneous Potentials)

−U(x) + λ · 2I(x) = 0.

This gives a simple formula for λ:

λ =
U(x)

2I(x)

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 10 / 46



Homothetic Solutions

Guess a solution of the form qi(t) = r(t)xi ∀i where xi is an unknown
vector and r(t) an unknown scalar function. Plug it in:

mi r̈ xi =
n∑

j 6=i

mimj (r(t)xj − r(t)xi)

||r(t)xj − r(t)xi ||3

=
r
|r |3

n∑
j 6=i

mimj(xj − xi)

||xj − xi ||3

=
r
|r |3

∂U
∂qi

(x)

Suppose that the xi ’s satisfy ∂U
∂qi

(x) = −λmixi for each i (ie. they form
a central configuration), then r(t) must satisfy

r̈ = − λr
|r |3

1d Kepler problem
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Homothetic Solutions (cont.)

The scalar ODE for r(t)

r̈ = − λr
|r |3

is easily studied (Hamiltonian system) and contains solutions that
approach zero in finite time as well as solutions that escape to∞.

In particular, if r(0) = r0 and ṙ(0) = 0, then collision, lim
t→T−

r(t) = 0,

occurs at time

T =
π√
λ

( r0

2

)3/2
.

One can also check that r(t) = c t2/3 with c3 = 9λ/2 is a solution
(parabolic case h = 0).
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Homographic Solutions

Complexify and guess a solution of the form

qi(t) = z(t) xi ∀i with z(t) : R 7→ C,xi ∈ C.

By similar arguments as with the homothetic case, this leads to

z̈ = − λz
|z|3

2d Kepler problem

when the x′is form a planar central configuration.

Therefore, attaching a particular solution of the planar Kepler problem
(circular, elliptic, hyperbolic, parabolic) to each body in a planar c.c.
yields a solution to the full n-body problem.

Circular Kepler orbit yields a rigid rotation, a relative equilibrium
(same shape and size)
An elliptic Kepler orbit yields a periodic orbit, a relative periodic
solution (same shape, oscillating size)

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 13 / 46



Homographic Solutions

Complexify and guess a solution of the form

qi(t) = z(t) xi ∀i with z(t) : R 7→ C,xi ∈ C.

By similar arguments as with the homothetic case, this leads to

z̈ = − λz
|z|3

2d Kepler problem

when the x′is form a planar central configuration.

Therefore, attaching a particular solution of the planar Kepler problem
(circular, elliptic, hyperbolic, parabolic) to each body in a planar c.c.
yields a solution to the full n-body problem.

Circular Kepler orbit yields a rigid rotation, a relative equilibrium
(same shape and size)
An elliptic Kepler orbit yields a periodic orbit, a relative periodic
solution (same shape, oscillating size)

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 13 / 46



Approaches to Studying CCs

1. Existence: Fix n. Find all possible c.c.’s and investigate how they
depend on the masses.

Too Hard for n > 3.

2. Existence for special cases: For a particular choice of masses (or
set of masses), what are the c.c.’s and are there any interesting
bifurcations? Success in many cases.

One large mass, the rest small (forms a ring)
One small mass, the rest large (a restricted problem). Nice
applications to spacecraft transport.
Equal masses or some other choice of symmetry. Does equal
masses imply symmetry in the configuration?
Almost all equal masses (three out of four equal, two pairs of two
equal masses, etc.)
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3. An Inverse Problem: Given a fixed set of positions, what (if any) are
the possible masses that make the configuration central? (no
restriction on the center of mass)

Success — masses enter linearly

Regular n-gon requires equal masses if n > 3.
Nested n-gons (Moeckel and Simó 1995 , Llibre and Mello 2009)
Pyramid with a square base (Fayçal, 1996)
Stacked configurations (Hampton, 2005)
Collinear configurations (Albouy and Moeckel, 2000)
Symmetric collinear configurations (Shea Sennett, HC ’10)

4. Generic Results: What properties hold true for all c.c.’s? Existence
results.

For any four masses, there exists at least one convex quadrilateral
cc. (MacMillan and Bartky 1932, Xia 2004)
For any four masses, there exists at least one concave
quadrilateral cc. (Hampton, PhD Thesis 2002)
The Perpendicular Bisector Theorem (Moeckel, 1990)
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The Planar, Circular, Restricted 3-Body Problem (PCR3BP)

q1 = (1− µ,0),m1 = µ and q2 = (−µ,0),m2 = 1− µ (0 < µ ≤ 1/2)

Let a =
√

(x − 1 + µ)2 + y2, b =
√

(x + µ)2 + y2.

Equations of motion for the infinitesimal body (x , y):

ẋ = u
ẏ = v
u̇ = Vx + 2v
v̇ = Vy − 2u

where
V (x , y) =

1
2

(x2 + y2) +
µ

a
+

1− µ
b

+
1
2
µ(1− µ)

is the amended potential.
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Figure: The five libration points (Lagrange points) in the Sun-Earth system
(not drawn to scale).
http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Figure: The level curves for the amended potential and the libration points.
http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Some Facts about L4 and L5

1 L4 and L5 are linearly stable provided the mass ratio is at least
25 : 1

2 The Trojan and Greek asteroids are located at the Sun-Jupiter L4
and L5 points.

3 Saturn and its large moon Tethys have two smaller moons, Telesto
and Calypso, at their L4 and L5 points.

4 Dust clouds exist at the Sun-Earth L4 and L5 points (1950). The
mysterious Kordylewski clouds may be (were?) present at the L4
and L5 points of the Earth-Moon system.

5 The L5 Society formed in 1975 to promote the formation of space
colonies at the L4 or L5 points in the Earth-Moon system. From
the first newsletter: “our clearly stated long range goal will be to
disband the Society in a mass meeting at L5.”
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Some Facts about the Collinear Lagrange Points

1 The collinear Lagrange points are saddle-centers (two pure
imaginary eigenvalues, two real evals of opposite sign). It is
possible to find halo orbits about these points.

2 NASA Spacecraft at the Sun-Earth L1 point: Advanced
Composition Explorer (ACE), Solar and Heliospheric Observatory
(SOHO), WIND, Genesis (finished), International Sun/Earth
Explorer 3 (ISEE-3) (finished), Deep Space Climate Observatory
(on hold)

3 Spacecraft at the Sun-Earth L2 point: Wilkinson Microwave
Anisotropy Probe (WMAP) (NASA), Planck satellite and Herschel
Space Observatory (ESA, scheduled to launch together in Spring
2009), James Webb Space Telescope (NASA, ESA, CSA,
scheduled for June 2013)

4 Lots of examples in Science Fiction: In the Star Trek: The Next
Generation episode, "The Survivors", the Enterprise is surprised
by an enemy ship that had been hiding in a Lagrange point.
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Moeckel and Simó, "Bifurcation of spatial central configurations from
planar ones"
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Llibre and Mello, "Triple and quadruple nested central configurations
for the planar n-body problem," 2009
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Llibre and Mello, "Triple and quadruple nested central configurations
for the planar n-body problem," 2009
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Hampton, "Stacked central configurations: new examples in the planar
five-body problem," 2005
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Albouy and Fu, "Relative equilibria of four identical satellites," 2009
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The Perpendicular Bisector Theorem (Moeckel, 1990)

Theorem
Suppose that x is a planar c.c. and let xi and xj be any two of its
points. Then, if one of the two open cones determined by the line
through xi and xj and its perpendicular bisector contain points of the
configuration, so must the other one.
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Perpendicular Bisector Thm. — Examples
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Perpendicular Bisector Thm. — Examples (Cont.)

Corollary
The only possible non-collinear three-body central configuration is the
equilateral triangle.
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Collinear Central Configurations

Set d = 1, so q = (q1, . . . ,qn) ∈ Rn. Let
∆′ = {q ∈ Rn : qi = qj for some i 6= j} (collision set). The configuration
space for the collinear n-body problem is Rn −∆′.

Set S′ = {q ∈ Rn : I(q) = 1} (mass ellipsoid) and
P = {q ∈ Rn :

∑
i miqi = 0} (center of mass at origin).

Topologically, S = S′ ∩ P is a sphere of dimension n − 2 lying in the
plane P.

Example n = 3: S′ is a 2-sphere, P is a plane and S is a great circle.
The collision set ∆′ intersects S in 6 points, one for each ordering of
q1,q2,q3.
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Collinear Central Configurations (Cont.)

Let ∆ = S ∩∆′ be the intersection of the collision planes with S.
Topologically, ∆ contains spheres of dimension n − 3.

The space S −∆ has n! connected components, one for each ordering
of the variables q1, . . . ,qn.

Let V be the restriction of U to S −∆. A critical point of V is a c.c.
Since lim

q→∆
V =∞, there is at least one minimum per connected

component.

One can show that the Hessian is always positive definite at any
critical point, (concave up), thus the only critical points are minima and
there are precisely n! of them, one for each ordering of the variables.
(Moulton, 1910, Annals of Mathematics)
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Degeneracies and Counting∑
j 6=i

mimj(xj − xi)

r3
ij

+ λmixi = 0, i = {1,2, . . . ,n} (1)

x = (x1,x2, . . . ,xn) is a c.c. implies that

cx = (cx1, cx2, . . . , cxn) and

Rx = (Rx1,Rx2, . . . ,Rxn)

are also c.c.’s, where c is a scalar and R ∈ SO(d).

Let S be the ellipsoid defined by 2I = 1 (fixes scaling). Define an
equivalence relation via x ∼ Rx, R ∈ SO(d) (identify configurations
equivalent under a rotation).

Critical points of U([x]) on S/ ∼ are central configurations. When
counting c.c.’s, one usually counts equivalence classes.
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Finiteness

The Smale/Wintner/Chazy Question: For a fixed choice of masses, is
the number of equivalence classes of planar central configurations
finite? (Smale’s 6th problem for the 21st century)

n = 3 5 total Euler (1767), Lagrange (1772)
Collinear n!/2 Moulton (1910)
4 equal masses 50 total Albouy (1995)
n = 4 Finite, 32 – 8472 Hampton and Moeckel (2006)

using BKK Theory
n ≥ 5 Open problem!
A monkey wrench: There exists a continuum of c.c.’s in the planar
5-body problem with masses m1 = m2 = m3 = m4 = 1 and
m5 = −1/4 (GR, 1999)
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The 1+rhombus one-parameter family of c.c.’s
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Bodies on rhombus have mass 1 while "body" at center has mass
−1/4. Configuration is a c.c. as long as the side length of the rhombus
stays constant (interior angle serves as a parameter, λ = 2/c3).
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The Planar, Circular, Restricted Four-Body Problem (PCR4BP)

Take three masses ("primaries") on a Lagrange equilateral triangle
relative equilibrium and insert a fourth infinitesimal mass that has no
influence on the circular orbits of the larger bodies. Change to a
rotating coordinate system in a frame where the primaries are fixed.
Let (x , y) be coordinates for the infinitesimal mass in this new frame.

Equations of motion: (assume m1 + m2 + m3 = 1)

ẍ = 2ẏ + Vx

ÿ = −2ẋ + Vy

where

V (x , y) =
1
2

(
(x − cx )2 + (y − cy )2

)
+

m1

a
+

m2

b
+

m3

c
is the amended potential, (cx , cy ) is the center of mass of the primaries
and a,b, c represent the respective distances of the infinitesimal mass
from each of the three primaries.
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Figure: Setup for the planar, circular, restricted four-body problem.
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Figure: The 10 equilibria for the PCR4BP in the case of equal masses. Note
the symmetry with respect to the equilateral triangle of the primaries.

Roberts (Holy Cross) On Central Configurations HC Faculty Seminar 36 / 46



Theorem
(Kulevich, GR, Smith 2008) The number of equilibria in the PCR4BP is
finite for any choice of masses. In particular, there are at most 196
critical points.

Remarks:
1 Our result showing finiteness appears to be new. Leandro (2006)

uses linear fractional transformations and resultants to prove that
no bifurcations occur in the number of critical points outside the
triangle of primaries, thus giving an exact count of 6 equilibria
outside the triangle of primaries.

2 The upper bound of 196 is clearly not optimal as the work of
Pedersen (1944), Simó (1978), Arenstorf (1982) and Leandro
(2006) suggests that the actual number varies between 8 and 10.
It is a surprisingly complicated problem to study the bifurcation
curve in the mass parameter space for which there are precisely 9
critical points.
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Mutual Distances Make Great Coordinates

Recall:

U(q) =
n∑

i<j

mimj

rij

Alternative formula for I in terms of mutual distances: (center of mass
at origin)

I(q) =
1

2M

n∑
i<j

mimj r2
ij

where M = m1 + · · ·+ mn is the total mass.

Key Observation: The Smale/Wintner/Chazy question can be
formulated using the mutual distances as coordinates. The problem
can be reduced to showing a system of polynomial equations has a
finite number of solutions.
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The Lagrange Equilateral Triangle Solution

Suppose n = 3 and we seek only planar c.c.’s. Since we are identifying
triangles identical under a translation and/or rotation, the three mutual
distances r12, r13, r23 serve as independent coordinates by the SSS
Postulate of Euclidean geometry.

Searching for critical points of U subject to the constraint I = k in these
variables yields three, easy decoupled equations of the form:

−
mimj

r2
ij

+ λ
mimj

M
rij = 0

Solution: rij = (M/λ)1/3

This is true for any pair (i , j) so that all mutual distances must be equal
to the same constant! Thus the equilateral triangle is the only
non-collinear c.c. in the 3-body problem.
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Generalizing Lagrange

In the four-body problem in R3, the six mutual distances
r12, r13, r14, r23, r24, r34 specify a unique tetrahedron up to translation
and rotation. Again, these coordinates can be used as variables.

Searching for critical points of U subject to the constraint I = k in these
variables yields the same decoupled equations as before:

−
mimj

r2
ij

+ λ
mimj

M
rij = 0

Solution: rij = (M/λ)1/3

This is true for any pair (i , j) so that all mutual distances are equal.
Thus the regular tetrahedron is the only non-planar c.c. in the
four-body problem.
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Generalizing Lagrange (cont.)

Theorem
The regular n − 1 dimensional simplex with n arbitrary masses is a
central configuration for the n-body problem. It is the only c.c. of this
dimension.

In order to find the lower dimensional c.c.’s we must add further
restrictions on the mutual distances. For example, to find collinear
c.c.’s in the 3-body problem, we could require

F = r12 + r23 − r13 = 0

as an additional constraint. In other words, the collinear c.c.’s for the
ordering q1 < q2 < q3 would be critical points of U subject to the
constraints I = k and F = 0.
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4-body Planar CC’s

To use the six mutual distances r12, r13, r14, r23, r24, r34 as variables, we
need an additional constraint that ensures the configuration is planar.
We require that the volume of the tetrahedron be zero (Cayley-Menger
determinant).

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Goal: Find critical points of U + λ(I − k) + σ
64F (two Lagrange

multipliers) satisfying I = k and F = 0.
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4-body Planar CC’s cont.

Amazing fact: When F = 0,

∂F
∂r2

ij
= 32AiAj

where Ai is the oriented area of the triangle not including xi . For
example, A1 is the oriented area of the triangle formed by bodies x2,x3
and x4.

Differentiating w.r.t. r2
ij leads to six equations of the form:

mimj(λ
′ − r−3

ij ) + σAiAj = 0

where λ′ = λ/M.
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Dziobek’s Equations

m1m2(r−3
12 − λ

′) = σA1A2 m3m4(r−3
34 − λ

′) = σA3A4

m1m3(r−3
13 − λ

′) = σA1A3 m2m4(r−3
24 − λ

′) = σA2A4

m1m4(r−3
14 − λ

′) = σA1A4 m2m3(r−3
23 − λ

′) = σA2A3

Multiply pairwise gives identical right-hand sides! This leads to a
famous set of equations, first discovered by Dziobek (1900).

(r−3
12 − λ

′)(r−3
34 − λ

′) = (r−3
13 − λ

′)(r−3
24 − λ

′) = (r−3
14 − λ

′)(r−3
23 − λ

′)

Necessary and Sufficient: If these last equations are satisfied for a
planar configuration, then the ratios of the masses can be obtained by
dividing appropriate pairs in the first list. However, positivity of the
masses must still be checked.
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Convex 4-body CC’s

A sample ratio:

m1A2

m2A1
=

r−3
23 − λ

′

r−3
13 − λ′

=
r−3
24 − λ

′

r−3
14 − λ′

=
r−3
23 − r−3

24

r−3
13 − r−3

14

Requiring positivity of the masses enforces the following requirements
on the mutual distances in the convex case:

The diagonals must be longer than all exterior sides.
The longest and shortest exterior sides are opposite each other.
(Thus, the only possible rectangle is a square.)
The ratio of the lengths of the diagonals must lie between 1/

√
3

and
√

3.
The size of the interior angles must be between 30◦ and 120◦.
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Some Approachable Problems?

Find all central configurations in the four-body problem lying on a
circle (co-circular c.c.’s). If the center of mass coincides with the
center of the circle, the only possibility is the square with equal
masses (Hampton, 2003). This is related to a problem posed by
Alain Chenciner: Are there any perverse choreographies? A
choreography (all bodies trace out the same curve) is perverse if it
is a solution to the n-body problem for more than one set of
masses (not scaling).

What is the connection between symmetry in the masses and
symmetry in the corresponding central configuration? For
example, all c.c.’s for four equal masses have a line of symmetry.
Numerically this looks to be true for n = 5,6,7 but not n = 8
(Moeckel). Can this be proven? What about two pairs of equal
masses in the four-body problem?
Finiteness: Smale/Wintner/Chazy n = 5, restricted problems
(PCR5BP)
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