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Equations of Motion

qi ∈ R2 = position of the i-th body
mi = mass of the i-th body
rij = ||qi − qj ||

M =
n∑

i=1

mi , c =
1
M

n∑
i=1

miqi (center of mass)

U(q) =
n∑

i<j

mimj

rij
(Newtonian potential function)

Equations of motion for the n-body problem:

mi q̈i =
∂U
∂qi

, i ∈ {1,2, . . .n}

=
n∑

j 6=i

mimj(qj − qi)

r3
ij
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Definition
A planar central configuration (c.c.) is a configuration of bodies
(x1,x2, . . . ,xn),xi ∈ R2 such that the acceleration vector for each body
is a common scalar multiple of its position vector (with respect to the
center of mass). Specifically, in the Newtonian n-body problem with
center of mass c, for each index i , ∂U

∂qi
(x) = −λmi(xi − c) or

n∑
j 6=i

mimj(xj − xi)

||xj − xi ||3
+ λmi(xi − c) = 0

for some scalar λ independent of i .

Finding c.c.’s is an algebra problem — no dynamics or derivatives.
Summing together the n equations above quickly yields
c = 1

M
∑

mixi .
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Properties of Central Configurations
Released from rest, a c.c. maintains the same shape as it heads
toward total collision (homothetic motion).

Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.

Any Kepler orbit (elliptic, hyperbolic, ejection-collision) can be
attached to a c.c. to obtain a solution to the full n-body problem.

For any collision orbit in the n-body problem, the colliding bodies
asymptotically approach a c.c.

Bifurcations in the topology of the integral manifolds in the planar
problem (holding hc2 constant where h is the value of the energy
and c is the length of the angular momentum vector) occur
precisely at values corresponding to central configurations.

307 articles found on MathSciNet using a general search for
"central configurations"
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3-Body Collinear Configuration (Euler 1767)
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Equilateral Triangle (Lagrange 1772)
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Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize)
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Co-Circular Central Configurations

Definition
A central configuration where the bodies all lie on a common circle is
called a co-circular central configuration.

Symmetric examples: the regular n-gon, any isosceles trapezoid,
some convex kite configurations

Asymmetric examples exist too. In the four-body problem, the set
of co-circular central configurations with positive masses is a
two-dimensional surface, a graph over two of the exterior
side-lengths (Cors and GR, 2012).

Roberts (Holy Cross) The Regular n-gon c.c. AIMS Madrid 9 / 34



Figure : An isosceles trapezoid co-circular central configuration, where
m1 = m2 and m3 = m4. The center of the circumscribing circle is marked with
an O.
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Figure : A co-circular kite central configuration, where m2 = m4. The center of
the circumscribing circle is marked with an O.
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Figure : An asymmetric co-circular central configuration. The center of the
circumscribing circle is marked with an O while the center of mass is labeled
with an X.
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Figure : The relative equilibrium generated by the previous central
configuration.
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Co-Circular Central Configurations with a Special Property

Note: The regular n-gon (equal masses) has its center of mass
coinciding with the center of the circle. Consequently, the
corresponding relative equilibrium motion is just rotation of the n-gon
along its circumscribing circle. This type of motion is called a
choreography, since all the bodies are following each other around the
same curve.

Question: Is the regular n-gon the only co-circular central configuration
to have its center of mass coincide with the center of the
circumscribing circle? (Alain Chenciner, 2004)

If another solution existed other than the regular n-gon, it would be a
surprising example of a non-equally spaced choreography, one where
the time taken for one mass to reach the position of the mass ahead of
it was not constant along the configuration.
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Some Results on Chenciner’s Question

n = 4 : The only four-body co-circular central configuration with
center of mass coinciding with the center of the circle is the
square with equal masses (Hampton, 2003).

n = 5 : Llibre and Valls (2013) have announced that the regular
pentagon (again with equal masses) is the only co-circular central
configuration with this special property.

Chenciner’s question is listed as Problem 12 in a collection of
important open problems in celestial mechanics compiled by
Albouy, Cabral and Santos (2012).
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Generalizing Chenciner’s Question

Consider a family of potential functions Uα of the form

Uα =
∑
i<j

mimj

r αij
,

where α > 0 is a real parameter.

A central configuration is a special set of distinct positions xi ∈ R2

satisfying

n∑
j 6=i

mimj(xj − xi)

r α+2
ij

+
λ

α
mixi = 0 for each i ∈ {1, . . . ,n}

and for some scalar λ independent of i . Without loss of generality, we
take the center of mass to be c = 0.
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An Alternate Characterization of CC’s

The system of equations defining a central configuration can be written
more compactly as

∇Uα(x) + λ∇I(x) = 0, (1)

where I is one half the moment of inertia, I = 1
2
∑n

i=1 mi ||qi ||2.

Note that I is a homogeneous function of degree 2 while Uα is
homogeneous of degree −α. Taking the dot product of equation (1)
with x then yields the useful formula

λ ≡ λ(α) =
αUα

2I
.

Since α > 0 and mi > 0, we must have λ > 0.

Assuming the equations of motion are in the standard form
mi q̈i = ∂Uα/∂qi , the angular velocity of the corresponding relative
equilibrium is given by

√
λ.
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Angular and Radial Components

Suppose we have a central configuration on the unit circle, whose
center of mass is at the origin. Let xi = (cos θi , sin θi) where
θi ∈ [0,2π) for each i . The angles must satisfy, for each i ∈ {1, . . . ,n},

n∑
j 6=i

mj

r α+2
ij

[
cos θj − cos θi
sin θj − sin θi

]
+
λ

α

[
cos θi
sin θi

]
= 0. (2)

Divide these equations into angular and radial components.
The angular components are obtained by computing the dot product of
the i-th equation in system (2) with the vector [− sin θi , cos θi ]

T . This
yields the system

n∑
j 6=i

mj

r α+2
ij

sin(θj − θi) = 0, for each i ∈ {1, . . . ,n}. (3)

If equation (3) holds for some i , then the force (due to gravity for the
case α = 1) acting on the i-th body points toward the center of mass.
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Angular Components (cont.)

Using the fact that

rij =
√

2− 2 cos(θj − θi) = 2 sin
(
|θj − θi |

2

)
,

equation (3) simplifies to

− 1
2α+1

n∑
j 6=i

δij mj cos
(
θj−θi

2

)
[
sin
(
|θj−θi |

2

)]α+1 = 0, where δij =

{
1 if θi − θj > 0
−1 if θi − θj < 0.

(4)

Note: Equation (4) can also be derived via a variational approach.
Using the principle of least action and beginning with a relative
equilibrium solution on a circle with center of mass equivalent to the
center of the circle, a perturbing path that only varies the angles leads
to equation (4).
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Radial Components

To derive the equations for the radial components, we take the dot
product of the i-th equation in system (2) with the vector
[cos θi , sin θi ]

T . This gives

n∑
j 6=i

mj

r α+2
ij

(
cos(θj − θi)− 1

)
+
λ

α
= 0, for each i ∈ {1, . . . ,n},

which simplifies to

n∑
j 6=i

mj

r αij
=

2λ
α
, for each i ∈ {1, . . . ,n}. (5)

If equation (5) holds for some i , then the magnitude of the force vector
acting on the i-th body is the correct length to be a central
configuration.
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The Key Equations

It is straight-forward to check that

− 1
2α+1

n∑
j 6=i

δij mj cos
(
θj−θi

2

)
[
sin
(
|θj−θi |

2

)]α+1 = 0, where δij =

{
1 if θi − θj > 0
−1 if θi − θj < 0

and
n∑

j 6=i

mj

r αij
=

2λ
α
, for each i ∈ {1, . . . ,n}

define a system of 2n equations that are both necessary and sufficient
for a central configuration on the unit circle to have its center of mass
at the origin.
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The Planar n-Vortex Problem

Suppose xi now represents the position of the i-th vortex and mi = Γi
is its circulation or vorticity, which may either be positive or negative.
The equations of motion are determined by

U0 = −
∑
i<j

ΓiΓj ln(rij),

which is actually the Hamiltonian for the system.

Central configurations in the planar n-vortex problem are often referred
to as stationary solutions or vortex crystals. They are found by solving

n∑
j 6=i

ΓiΓj(xj − xi)

r2
ij

+ ωΓixi = 0 for each i ∈ {1, . . . ,n},

and for some scalar ω independent of i .
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Figure : Weather research and forecasting model from the National Center for
Atmospheric Research (NCAR) showing the field of precipitable water for
Hurricane Rita (2005). Note the presence of three maxima near the vertices
of an equilateral triangle contained within the hurricane’s “polygonal” eyewall.
http://www.atmos.albany.edu/facstaff/kristen/wrf/wrf.html
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Figure : Saturn’s North Pole and its encircling hexagonal cloud structure.
First photographed by Voyager in the 1980’s and here again recently by the
Cassini spacecraft – a remarkably stable structure!
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An Alternate Characterization (Vortices)

As with the generalized Newtonian case, the system of equations
defining a central configuration can be written compactly as

∇U0(x) + ω∇I(x) = 0, (6)

where I = 1
2
∑n

i=1 Γi ||qi ||2 is now one half the angular impulse.

Taking the dot product of equation (6) with x yields

ω =
L
2I
, where L =

∑
i<j

ΓiΓj

is called the total angular vortex momentum.

Note that since Γi < 0 is now allowed, it is possible to have ω < 0,
which means the corresponding relative equilibrium rotates in the
opposite direction. This occurs in a family of rhombi c.c.’s.
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Angular and Radial Components (Vortices)

A co-circular central configuration of vortices lying on the unit circle
and whose center of vorticity is at the origin satisfies

n∑
j 6=i

Γj

r2
ij

[
cos θj − cos θi
sin θj − sin θi

]
+ω

[
cos θi
sin θi

]
= 0, for each i ∈ {1, . . . ,n}. (7)

The angular components come from taking the dot product of the i-th
equation in system (7) with the vector [− sin θi , cos θi ]

T , which yields
n∑

j 6=i

Γj

r2
ij

sin(θj − θi) = 0, for each i ∈ {1, . . . ,n}.

Similarly, the radial components come from taking the dot product with
[cos θi , sin θi ]

T , which yields the surprisingly simple equation
n∑

j 6=i

Γj = 2ω, for each i ∈ {1, . . . ,n}.
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Vortices: Equal-Strength Circulations Required

The necessary condition

n∑
j 6=i

Γj = 2ω, for each i ∈ {1, . . . ,n},

simplifies to Γi = Γ− 2ω for each i , where Γ =
∑n

i=1 Γi is the total
circulation.

But Γ− 2ω is independent of i , so all the vorticities must be equal!

Theorem
In the planar n-vortex problem with arbitrary vorticities, a co-circular
central configuration whose center of vorticity is located at the center of
the circle containing the vortices must have equal-strength circulations.
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Restricting Uα to the Unit Circle

Let

Vα = Vα(θ1, . . . , θn) =
n∑

i<j

mimj[
2 sin

(
|θj−θi |

2

)]α
and

V0 = −
n∑

i<j

ΓiΓj ln
[
2 sin

(
|θj − θi |

2

)]
be the restrictions of Uα and U0, respectively, to the unit circle.

Lemma
Fix α ≥ 0 and suppose that x = (x1, . . . ,xn) is a central configuration
on the unit circle with center of mass (or vorticity) at the origin. Then
the set of angles θ = (θ1, . . . , θn) defining the positions of x must be a
critical point of Vα.
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Motivation for the Lemma

The equations for the angular components are

− 1
2α+1

n∑
j 6=i

δij mj cos
(
θj−θi

2

)
[
sin
(
|θj−θi |

2

)]α+1 = 0, where δij =

{
1 if θi − θj > 0
−1 if θi − θj < 0.

The left-hand side of this equation is
1
αmi

· ∂Vα
∂θi

where

Vα =
n∑

i<j

mimj[
2 sin

(
|θj−θi |

2

)]α .
Motivation for this calculation comes from a well-known but
unpublished preprint by Hall (1988) on central configurations with one
large mass and n small, infinitesimal masses. As the small masses
approach zero, their positions limit on a circle at a critical point of a
potential function such as Vα.
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A Topological Approach

Theorem
Fix α ≥ 0. Given a set of positive masses mi (or positive circulations Γi
if α = 0), for each ordering of the bodies on the unit circle, Vα has a
unique critical point up to translation. This critical point is a minimum.

Proof Outline: Follow an approach used by Moulton for collinear c.c.’s.
Suppose the bodies are arranged so that

0 ≤ θ1 < θ2 < · · · < θn < 2π. (8)

On the sub-region of [0,2π]n determined by the inequalities in (8), Vα
is continuous, bounded below and approaches∞ on the boundary.
Thus, Vα attains a minimum on this region.
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Proof Outline cont.

To see that the critical point is unique, we examine the quadratic form
uT D2Vα(θ) w , where D2Vα is the Hessian matrix of Vα. This is messy,
but the key feature is that

∂2Vα
∂θ2

i
= −

n∑
j 6=i

∂2Vα
∂θi∂θj

.

For the vortex case, we compute that

uT D2V0(φ) w =
1
4

n∑
i<j

ΓiΓj csc2
(
φj − φi

2

)
(ui − uj)(wi − wj).

Then, assuming Γi > 0 ∀i , we see that uT D2V0(φ) u ≥ 0, with equality
if and only if u is a scalar multiple of [1 1 . . . 1]T . A similar calculation
works for the case α > 0.
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Main Result: Generalized Newtonian Case

Corollary
For any α > 0 and for the case of equal masses, the regular n-gon is
the only co-circular central configuration with center of mass coinciding
with the center of the circle containing the bodies.

Easy proof: Any co-circular central configuration having its center of
mass at the center of the circumscribing circle must be a critical point
of Vα. By our previous theorem, since the masses are fixed, this
critical point must be unique. Since the regular n-gon is a solution in
the equal-mass case, it must be the unique solution to the problem.
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Main Result: Vortex Case is Completely Solved

Corollary
In the planar n-vortex problem with arbitrary vorticities, the only
co-circular central configuration with center of vorticity coinciding with
the center of the circle is the regular n-gon with equal vorticities.

Easy proof: By our earlier result, the circulations of the central
configuration must all be equal. Without loss of generality, we can take
this common circulation to be positive. By our previous theorem, there
can only be one such possible central configuration, and this has to be
the regular n-gon.
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Comments/Future Work:

1 Using a different approach that features a clever application of the
fundamental theorem of algebra, Aref (2011) has shown that
when the circulations are assumed to be equal, the only central
configuration with center of vorticity coinciding with the center of
the circle is the regular n-gon.

2 Can we use our equations to prove some special cases?
Surprisingly, they don’t lead to an easy proof for the case n = 4
(e.g., with Gröbner bases). Maybe they help with symmetric
configurations?

3 What about connecting the vortex case (α = 0) to the Newtonian
case (α = 1), treating α as a smooth parameter? Can we prove
that there is no bifurcation as α increases? Then the result for the
vortex case would have to extend to all α > 0.

4 Thank you for your attention!
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