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Newton’s Method

Iterative root-finding method f (x) = 0: x0, x1, x2, . . .

xn+1 = xn −
f (xn)

f ′(xn)

Figure: Newton’s Method for finding a root of a function on R. Image source:
http://aleph0.clarku.edu/∼djoyce/newton/method.html
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Newton’s Method as a Dynamical System

Np(z) = z − p(z)

p′(z)
, p : C 7→ C

If α is a simple root of p, then α is a super-attracting fixed point for
Np, ie. Np(α) = α,N ′p(α) = 0.

Newton’s method “tends” to obey the nearest-root principal: initial
seeds iterate towards the closest root.

If p(z) is a quadratic polynomial with distinct roots, Np is
topologically conjugate to z 7→ z2. The Julia set of Np is precisely
the perpendicular bisector of the line segment connecting the two
roots.
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Success of Newton’s Method

Good: Every point in the basin of attraction of a root is quickly
drawn towards that root. These are good guesses.

Bad: Points in the Julia set of Np never converge to a root. These
are bad places to guess, although a small perturbation of such a
guess will still find a root.

Ugly: In certain cases, Newton’s method Np may contain an
extraneous attracting cycle distinct from the roots of p. This would
yield an entire open region of the complex plane that never
converges to a root. Here, a small perturbation may not improve
your situation!
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Figure: The dynamical plane for Newton’s method applied to
pλ(z) = (z − 1)(z + 1)(z − λ)(z − λ̄) with λ ≈ 0.4438656912 i . The “bad”
initial seeds (black) iterate towards a super-attracting period 2-cycle.
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The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these
extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map
attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are
different from the roots. These “free” critical points will lead to an
extraneous attracting cycle should it exist. (Curry, Garnett & Sullivan
1983)

Since N ′p(z) =
p(z) p′′(z)

[p′(z)]2
, the inflection points of p are the free critical

points of Np.
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The Cubic Case

pλ(z) = (z − 1)(z + 1)(z − λ), λ ∈ C

Figure: The parameter plane for Newton’s method applied to pλ. Black
parameter values correspond to polynomials for which the free critical point
does not converge to a root, ie., it is drawn into an extraneous attracting cycle.
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Research on Cubic Newton Maps

J. Curry, L. Garnett and D. Sullivan (1983)
J. Head (1988)
S. Sutherland (1989)
Tan Lei (1990, 1997)
F. Haesler and H. Kriete (1993)
P. Blanchard (1994)
P. Roesch (1997)
G. Roberts and J. Horgan-Kobelski (2004)

Theory of polynomial-like mappings
A. Douady and J. Hubbard (1985)
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A Symmetric Fourth-Degree Polynomial Family

pλ(z) = (z − 1)(z + 1)(z − λ)(z − λ̄), λ ∈ C

= z4 − 2Re(λ)z3 + (|λ|2 − 1)z2 + 2Re(λ)z − |λ|2

Symmetric location of the roots (kite configuration) leads to nice
reductions and interesting dynamics.

Two free critical points: p′′λ = 0

c± =
1
2

(
Re(λ)±

√
(Re(λ))2 − 2

3
(|λ|2 − 1)

)

Goal: Follow the orbits of c± as λ varies. If an extraneous attracting
cycle exists, it must attract at least one of these orbits.
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The Parameter Plane
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If λ = a + bi , then the discriminant of the quadratic defining the two
critical points c± is given by

δ =
1
3

(
a2 − 2b2 + 2

)
.
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Symmetry

Let Nλ = Npλ

Nλ̄ = Nλ (symmetric about the real axis)

Nλ ∼ N−λ via h(z) = −z (symmetric about the origin)

Real axis is invariant under Nλ

For λ ∈ R, c± converge to a root of pλ (analytic proof)

For λ = βi , Nβi ∼ Ni/β. For this interesting case, we can restrict to
a complicated 1-d real map with 0 < β ≤ 1 (analytic work)
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The Case λ = βi

Nβ(x) =
3x4 + (β2 − 1)x2 + β2

4x3 + 2(β2 − 1)x
.

Free critical points are real and symmetric with respect to the
origin. Thus, any extraneous attracting cycle for Newton’s method
must lie on the real axis.

Nβ is an odd function.

For 1/
√

3 ≤ β < 1, c+ converges to −1 while c− converges to 1
under iteration of Nβ.

For β2 = (2
√

5− 3)/
√

11 ≈ 0.4438656912, c+ and c− lie on a
super-attracting 2-cycle.

For odd periods, the free critical points can never lie on the same
periodic orbit.
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Figure: The orbit diagram for Nβ with β = (2
√

5− 3)/
√

11 ≈ 0.4438656912
showing a super-attracting 2-cycle between c+ and c−.
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Figure: The dynamical plane for Newton’s method applied to
pλ(z) = (z − 1)(z + 1)(z − λ)(z − λ̄) with λ ≈ 0.4438656912 i . The “bad”
initial seeds (black) iterate towards a super-attracting period 2-cycle.
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Per β Type Per β Type
2 0.4438657165 Bitransitive 5 0.2296915054 Disjoint
2 0.3835689425 Disjoint 5 0.2275660932 Disjoint
3 0.2291103601 Disjoint 5 0.2249682546 Disjoint
3 0.1341462433 Disjoint 5 0.1846443415 Disjoint
4 0.3642913699 Disjoint 5 0.1577119529 Disjoint
4 0.3363839984 Disjoint 5 0.1301919222 Disjoint
4 0.2158225775 Bitransitive 5 0.1289675832 Disjoint
4 0.2113012969 Disjoint 5 0.1125293225 Disjoint
4 0.1134351641 Disjoint 5 0.0917167962 Disjoint
4 0.0616595671 Disjoint 5 0.0570865125 Disjoint
5 0.2299712598 Disjoint 5 0.0298646167 Disjoint

Table: The table of β values for which Nβ has super-attracting periodic cycles.
Also listed is the type of cycle: Bitransitive (free critical points on same orbit)
or Disjoint (free critical points on separate orbits)
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Figure: The bifurcation diagram for Nβ showing the asymptotic behavior of
both free critical points as a function of β. The horizontal line segments at the
top and bottom of the figure are 1 and −1.
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Figure: The λ-parameter plane for Nλ following the orbit of both free critical
points (shading indicates different rates of convergence.) The window is
[−1,1]× [−i , i].
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A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, Experimental
Mathematics 1, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not
necessarily the same):

Bitransitive: Critical points attracted to same periodic orbit.
Obtain swallow configurations and tricorns in a real cross-section
of the parameter plane. Prototype models:
Swallow: x 7→ (x2 + c1)2 + c2, c1, c2 ∈ R
Tricorn: z 7→ (z2 + c)2 + c̄, c ∈ C
Disjoint Periodic Sinks: Critical points attracted to different
periodic orbits. Obtain product configurations and Mandelbrot sets
in a real cross-section of the parameter plane. Prototype models:
Product: x 7→ x2 + c1, y 7→ y2 + c2, c1, c2 ∈ R
Mandelbrot Set: z 7→ z2 + c, c ∈ C
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Figure: An example of Milnor’s “swallow configuration” in the parameter plane
for Nλ centered at the bitransitive value λ ≈ 0.443865i.
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Figure: As expected (according to Milnor), a tricorn is located in the
parameter plane at the inversion (1/β) i of the bitransitive value of the
previous figure. In this case, the two free critical points are complex
conjugates. The prototype for this case is the map z 7→ (z2 + c)2 + c̄.
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Figure: Zooming in on the parameter plane near the a disjoint periodic value,
λ ≈ 0.2291i, exhibiting a “product” configuration.
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Figure: The Mandelbrot-like set in the parameter plane arising from the
inversion (1/β) i of our disjoint periodic value of the previous figure.
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Some Final Observations

Conjecture: Each bitransitive λ-value corresponding to the two
free critical points sharing the same super-attracting n-cycle lies at
the center of a swallow configuration in the parameter plane.

The yellow diamond shaped boundary in the parameter plane is
defined by those λ-values where both p′λ and p′′λ simultaneously
vanish. If λ = a + bi , this occurs on the algebraic curve

(a2 − 2b2 + 2)3 − 27a2(b2 + 1)2 = 0.

Taking successive pre-images of this curve appears to define the
sequence of intertwining yellow “leaves” that approach the real
axis.

Thank You for Your Attention
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