Elusive Zeros Under Newton's Method

Gareth E. Roberts

Department of Mathematics and Computer Science College of the Holy Cross

Trevor M. O'Brien (Brown University)

MathFest 2010 Complex Dynamics: Opportunities for Undergraduate Research Pittsburgh, Pennsylvania August 5-7, 2010

Newton's Method

Iterative root-finding method f(x) = 0: $x_0, x_1, x_2, ...$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- -

Figure: Newton's Method for finding a root of a function on \mathbb{R} . Image source:

http://aleph0.clarku.edu/~djoyce/newton/method.html

-∢ ∃ ▶

$$N_{
ho}(z) = z - rac{
ho(z)}{
ho'(z)}, \qquad
ho: \mathbb{C} \mapsto \mathbb{C}$$

A B > A B >

$$N_p(z) = z - rac{p(z)}{p'(z)}, \qquad p: \mathbb{C} \mapsto \mathbb{C}$$

If α is a simple root of p, then α is a super-attracting fixed point for N_p, ie. N_p(α) = α, N'_p(α) = 0.

< 🗇 🕨 < 🖃 >

$$N_p(z) = z - rac{p(z)}{p'(z)}, \qquad p: \mathbb{C} \mapsto \mathbb{C}$$

- If α is a simple root of p, then α is a super-attracting fixed point for N_p, ie. N_p(α) = α, N'_p(α) = 0.
- Newton's method "tends" to obey the *nearest-root principal*: initial seeds iterate towards the closest root.

$$N_p(z) = z - rac{p(z)}{p'(z)}, \qquad p: \mathbb{C} \mapsto \mathbb{C}$$

- If α is a simple root of p, then α is a super-attracting fixed point for N_p , ie. $N_p(\alpha) = \alpha$, $N'_p(\alpha) = 0$.
- Newton's method "tends" to obey the *nearest-root principal*: initial seeds iterate towards the closest root.
- If *p*(*z*) is a quadratic polynomial with distinct roots, *N_p* is topologically conjugate to *z* → *z*². The Julia set of *N_p* is precisely the perpendicular bisector of the line segment connecting the two roots.

Success of Newton's Method

• Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.

Success of Newton's Method

- Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.
- Bad: Points in the Julia set of N_p never converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.

Success of Newton's Method

- Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.
- Bad: Points in the Julia set of N_p never converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.
- Ugly: In certain cases, Newton's method N_p may contain an extraneous attracting cycle distinct from the roots of p. This would yield an entire open **region** of the complex plane that never converges to a root. Here, a small perturbation may not improve your situation!

Figure: The dynamical plane for Newton's method applied to $p_{\lambda}(z) = (z-1)(z+1)(z-\lambda)(z-\overline{\lambda})$ with $\lambda \approx 0.4438656912 i$. The "bad" initial seeds (black) iterate towards a super-attracting period 2-cycle.

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

4 A N

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These "free" critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett & Sullivan 1983)

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These "free" critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett & Sullivan 1983)

Since $N'_p(z) = \frac{p(z) p''(z)}{[p'(z)]^2}$, the inflection points of *p* are the free critical points of N_p .

The Cubic Case

$$p_{\lambda}(z) = (z-1)(z+1)(z-\lambda), \quad \lambda \in \mathbb{C}$$

Figure: The parameter plane for Newton's method applied to p_{λ} . Black parameter values correspond to polynomials for which the free critical point does not converge to a root, ie., it is drawn into an extraneous attracting cycle.

Research on Cubic Newton Maps

- J. Curry, L. Garnett and D. Sullivan (1983)
- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei (1990, 1997)
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)
- G. Roberts and J. Horgan-Kobelski (2004)

Research on Cubic Newton Maps

- J. Curry, L. Garnett and D. Sullivan (1983)
- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei (1990, 1997)
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)
- G. Roberts and J. Horgan-Kobelski (2004)
- Theory of polynomial-like mappings A. Douady and J. Hubbard (1985)

A Symmetric Fourth-Degree Polynomial Family

$$\begin{array}{ll} p_{\lambda}(z) &=& (z-1)(z+1)(z-\lambda)(z-\bar{\lambda}), \quad \lambda \in \mathbb{C} \\ \\ &=& z^4 - 2 \mathrm{Re}(\lambda) z^3 + (|\lambda|^2 - 1) z^2 + 2 \mathrm{Re}(\lambda) z - |\lambda|^2 \end{array}$$

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.

A Symmetric Fourth-Degree Polynomial Family

$$\begin{array}{ll} p_{\lambda}(z) &=& (z-1)(z+1)(z-\lambda)(z-\bar{\lambda}), \quad \lambda \in \mathbb{C} \\ \\ &=& z^4 - 2 \mathrm{Re}(\lambda) z^3 + (|\lambda|^2 - 1) z^2 + 2 \mathrm{Re}(\lambda) z - |\lambda|^2 \end{array}$$

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.

Two free critical points: $p_\lambda''=0$

$$c_{\pm} = rac{1}{2} \left(\mathsf{Re}(\lambda) \pm \sqrt{(\mathsf{Re}(\lambda))^2 - rac{2}{3}(|\lambda|^2 - 1)}
ight)$$

Goal: Follow the orbits of c_{\pm} as λ varies. If an extraneous attracting cycle exists, it must attract at least one of these orbits.

The Parameter Plane

If $\lambda = a + bi$, then the discriminant of the quadratic defining the two critical points c_{\pm} is given by

$$\delta = \frac{1}{3} \left(a^2 - 2b^2 + 2 \right).$$

Let $N_{\lambda} = N_{p_{\lambda}}$

2

イロト イヨト イヨト イヨト

Let $N_{\lambda} = N_{p_{\lambda}}$

• $N_{\overline{\lambda}} = N_{\lambda}$ (symmetric about the real axis)

(a)

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\overline{\lambda}} = N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via h(z) = -z (symmetric about the origin)

3

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\bar{\lambda}} = N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via h(z) = -z (symmetric about the origin)
- Real axis is invariant under N_{λ}

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\bar{\lambda}} = N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via h(z) = -z (symmetric about the origin)
- Real axis is invariant under N_{λ}
- For $\lambda \in \mathbb{R}$, c_{\pm} converge to a root of p_{λ} (analytic proof)

4 **A b b b b b b**

Let $N_{\lambda} = N_{p_{\lambda}}$

- $N_{\bar{\lambda}} = N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via h(z) = -z (symmetric about the origin)
- Real axis is invariant under N_{λ}
- For $\lambda \in \mathbb{R}$, c_{\pm} converge to a root of p_{λ} (analytic proof)
- For λ = βi, N_{βi} ~ N_{i/β}. For this interesting case, we can restrict to a complicated 1-d real map with 0 < β ≤ 1 (analytic work)

A (1) > A (2) > A (2)

$$N_{eta}(x) = rac{3x^4 + (eta^2 - 1)x^2 + eta^2}{4x^3 + 2(eta^2 - 1)x} \, .$$

 Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.

$$N_{eta}(x) = rac{3x^4 + (eta^2 - 1)x^2 + eta^2}{4x^3 + 2(eta^2 - 1)x}.$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.

$$N_{eta}(x) = rac{3x^4 + (eta^2 - 1)x^2 + eta^2}{4x^3 + 2(eta^2 - 1)x} \, .$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For 1/√3 ≤ β < 1, c₊ converges to −1 while c₋ converges to 1 under iteration of N_β.

$$N_{\beta}(x) = rac{3x^4 + (eta^2 - 1)x^2 + eta^2}{4x^3 + 2(eta^2 - 1)x} \, .$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For 1/√3 ≤ β < 1, c₊ converges to −1 while c₋ converges to 1 under iteration of N_β.
- For $\beta_2 = (2\sqrt{5} 3)/\sqrt{11} \approx 0.4438656912$, c_+ and c_- lie on a super-attracting 2-cycle.

$$N_{\beta}(x) = rac{3x^4 + (eta^2 - 1)x^2 + eta^2}{4x^3 + 2(eta^2 - 1)x}.$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For 1/√3 ≤ β < 1, c₊ converges to −1 while c₋ converges to 1 under iteration of N_β.
- For $\beta_2 = (2\sqrt{5} 3)/\sqrt{11} \approx 0.4438656912$, c_+ and c_- lie on a super-attracting 2-cycle.
- For odd periods, the free critical points can never lie on the *same* periodic orbit.

Figure: The orbit diagram for N_{β} with $\beta = (2\sqrt{5} - 3)/\sqrt{11} \approx 0.4438656912$ showing a super-attracting 2-cycle between c_+ and c_- .

Figure: The dynamical plane for Newton's method applied to $p_{\lambda}(z) = (z-1)(z+1)(z-\lambda)(z-\overline{\lambda})$ with $\lambda \approx 0.4438656912 i$. The "bad" initial seeds (black) iterate towards a super-attracting period 2-cycle.

Per	β	Туре	Per	β	Туре
2	0.4438657165	Bitransitive	5	0.2296915054	Disjoint
2	0.3835689425	Disjoint	5	0.2275660932	Disjoint
3	0.2291103601	Disjoint	5	0.2249682546	Disjoint
3	0.1341462433	Disjoint	5	0.1846443415	Disjoint
4	0.3642913699	Disjoint	5	0.1577119529	Disjoint
4	0.3363839984	Disjoint	5	0.1301919222	Disjoint
4	0.2158225775	Bitransitive	5	0.1289675832	Disjoint
4	0.2113012969	Disjoint	5	0.1125293225	Disjoint
4	0.1134351641	Disjoint	5	0.0917167962	Disjoint
4	0.0616595671	Disjoint	5	0.0570865125	Disjoint
5	0.2299712598	Disjoint	5	0.0298646167	Disjoint

Table: The table of β values for which N_{β} has super-attracting periodic cycles. Also listed is the type of cycle: Bitransitive (free critical points on same orbit) or Disjoint (free critical points on separate orbits)

Figure: The bifurcation diagram for N_{β} showing the asymptotic behavior of both free critical points as a function of β . The horizontal line segments at the top and bottom of the figure are 1 and -1.

Figure: The λ -parameter plane for N_{λ} following the orbit of both free critical points (shading indicates different rates of convergence.) The window is $[-1, 1] \times [-i, i]$.

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, *Experimental Mathematics* **1**, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, *Experimental Mathematics* **1**, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

 Bitransitive: Critical points attracted to same periodic orbit. Obtain *swallow configurations* and *tricorns* in a real cross-section of the parameter plane. Prototype models: Swallow: *x* → (*x*² + *c*₁)² + *c*₂, *c*₁, *c*₂ ∈ ℝ Tricorn: *z* → (*z*² + *c*)² + *c*, *c* ∈ ℂ

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, *Experimental Mathematics* **1**, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- Bitransitive: Critical points attracted to same periodic orbit. Obtain *swallow configurations* and *tricorns* in a real cross-section of the parameter plane. Prototype models: Swallow: x ↦ (x² + c₁)² + c₂, c₁, c₂ ∈ ℝ Tricorn: z ↦ (z² + c)² + c̄, c ∈ C
- Disjoint Periodic Sinks: Critical points attracted to different periodic orbits. Obtain *product configurations* and *Mandelbrot sets* in a real cross-section of the parameter plane. Prototype models: Product: x → x² + c₁, y → y² + c₂, c₁, c₂ ∈ ℝ Mandelbrot Set: z → z² + c, c ∈ C

Figure: An example of Milnor's "swallow configuration" in the parameter plane for N_{λ} centered at the bitransitive value $\lambda \approx 0.443865i$.

Figure: As expected (according to Milnor), a tricorn is located in the parameter plane at the inversion $(1/\beta) i$ of the bitransitive value of the previous figure. In this case, the two free critical points are complex conjugates. The prototype for this case is the map $z \mapsto (z^2 + c)^2 + \bar{c}$.

Figure: Zooming in on the parameter plane near the a disjoint periodic value, $\lambda \approx 0.2291i$, exhibiting a "product" configuration.

Figure: The Mandelbrot-like set in the parameter plane arising from the inversion $(1/\beta)i$ of our disjoint periodic value of the previous figure.

Some Final Observations

• Conjecture: Each bitransitive λ -value corresponding to the two free critical points sharing the same super-attracting *n*-cycle lies at the center of a swallow configuration in the parameter plane.

Some Final Observations

- Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting *n*-cycle lies at the center of a swallow configuration in the parameter plane.
- The yellow diamond shaped boundary in the parameter plane is defined by those λ -values where both p'_{λ} and p''_{λ} simultaneously vanish. If $\lambda = a + bi$, this occurs on the algebraic curve

$$(a^2 - 2b^2 + 2)^3 - 27a^2(b^2 + 1)^2 = 0.$$

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow "leaves" that approach the real axis.

Some Final Observations

- Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting *n*-cycle lies at the center of a swallow configuration in the parameter plane.
- The yellow diamond shaped boundary in the parameter plane is defined by those λ -values where both p'_{λ} and p''_{λ} simultaneously vanish. If $\lambda = a + bi$, this occurs on the algebraic curve

$$(a^2 - 2b^2 + 2)^3 - 27a^2(b^2 + 1)^2 = 0.$$

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow "leaves" that approach the real axis.

Thank You for Your Attention