Elusive Zeros Under Newton's Method

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross
Trevor M. O'Brien (Brown University)
MathFest 2010
Complex Dynamics:
Opportunities for Undergraduate Research
Pittsburgh, Pennsylvania
August 5-7, 2010

Newton's Method

Iterative root-finding method $f(x)=0: \quad x_{0}, x_{1}, x_{2}, \ldots$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Figure: Newton's Method for finding a root of a function on \mathbb{R}. Image source:
http://aleph0.clarku.edu/~djoyce/newton/method.html

Newton's Method as a Dynamical System

$$
N_{p}(z)=z-\frac{p(z)}{p^{\prime}(z)}, \quad p: \mathbb{C} \mapsto \mathbb{C}
$$

Newton's Method as a Dynamical System

$$
N_{p}(z)=z-\frac{p(z)}{p^{\prime}(z)}, \quad p: \mathbb{C} \mapsto \mathbb{C}
$$

- If α is a simple root of p, then α is a super-attracting fixed point for N_{p}, ie. $N_{p}(\alpha)=\alpha, N_{p}^{\prime}(\alpha)=0$.

Newton's Method as a Dynamical System

$$
N_{p}(z)=z-\frac{p(z)}{p^{\prime}(z)}, \quad p: \mathbb{C} \mapsto \mathbb{C}
$$

- If α is a simple root of p, then α is a super-attracting fixed point for N_{p}, ie. $N_{p}(\alpha)=\alpha, N_{p}^{\prime}(\alpha)=0$.
- Newton's method "tends" to obey the nearest-root principal: initial seeds iterate towards the closest root.

Newton's Method as a Dynamical System

$$
N_{p}(z)=z-\frac{p(z)}{p^{\prime}(z)}, \quad p: \mathbb{C} \mapsto \mathbb{C}
$$

- If α is a simple root of p, then α is a super-attracting fixed point for N_{p}, ie. $N_{p}(\alpha)=\alpha, N_{p}^{\prime}(\alpha)=0$.
- Newton's method "tends" to obey the nearest-root principal: initial seeds iterate towards the closest root.
- If $p(z)$ is a quadratic polynomial with distinct roots, N_{p} is topologically conjugate to $z \mapsto z^{2}$. The Julia set of N_{p} is precisely the perpendicular bisector of the line segment connecting the two roots.

Success of Newton's Method

- Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.

Success of Newton's Method

- Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.
- Bad: Points in the Julia set of N_{p} never converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.

Success of Newton's Method

- Good: Every point in the basin of attraction of a root is quickly drawn towards that root. These are good guesses.
- Bad: Points in the Julia set of N_{p} never converge to a root. These are bad places to guess, although a small perturbation of such a guess will still find a root.
- Ugly: In certain cases, Newton's method N_{p} may contain an extraneous attracting cycle distinct from the roots of p. This would yield an entire open region of the complex plane that never converges to a root. Here, a small perturbation may not improve your situation!

Figure: The dynamical plane for Newton's method applied to $p_{\lambda}(z)=(z-1)(z+1)(z-\lambda)(z-\bar{\lambda})$ with $\lambda \approx 0.4438656912 i$. The "bad" initial seeds (black) iterate towards a super-attracting period 2-cycle.

The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These "free" critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett \& Sullivan 1983)

The Ugly/Interesting Case

Key Question: How can we find polynomials that contain these extraneous attracting cycles?

Theorem (Fatou, Julia): Every attracting cycle of a rational map attracts at least one critical point.

Simple Technique: Follow the orbit of the critical points which are different from the roots. These "free" critical points will lead to an extraneous attracting cycle should it exist. (Curry, Garnett \& Sullivan 1983)

Since $N_{p}^{\prime}(z)=\frac{p(z) p^{\prime \prime}(z)}{\left[p^{\prime}(z)\right]^{2}}$, the inflection points of p are the free critical points of N_{p}.

The Cubic Case

$$
p_{\lambda}(z)=(z-1)(z+1)(z-\lambda), \quad \lambda \in \mathbb{C}
$$

Figure: The parameter plane for Newton's method applied to p_{λ}. Black parameter values correspond to polynomials for which the free critical point does not converge to a root, ie., it is drawn into an extraneous attracting cycle.

Research on Cubic Newton Maps

- J. Curry, L. Garnett and D. Sullivan (1983)
- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei $(1990,1997)$
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)
- G. Roberts and J. Horgan-Kobelski (2004)

Research on Cubic Newton Maps

- J. Curry, L. Garnett and D. Sullivan (1983)
- J. Head (1988)
- S. Sutherland (1989)
- Tan Lei $(1990,1997)$
- F. Haesler and H. Kriete (1993)
- P. Blanchard (1994)
- P. Roesch (1997)
- G. Roberts and J. Horgan-Kobelski (2004)
- Theory of polynomial-like mappings
A. Douady and J. Hubbard (1985)

A Symmetric Fourth-Degree Polynomial Family

$$
\begin{aligned}
p_{\lambda}(z) & =(z-1)(z+1)(z-\lambda)(z-\bar{\lambda}), \quad \lambda \in \mathbb{C} \\
& =z^{4}-2 \operatorname{Re}(\lambda) z^{3}+\left(|\lambda|^{2}-1\right) z^{2}+2 \operatorname{Re}(\lambda) z-|\lambda|^{2}
\end{aligned}
$$

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.

A Symmetric Fourth-Degree Polynomial Family

$$
\begin{aligned}
p_{\lambda}(z) & =(z-1)(z+1)(z-\lambda)(z-\bar{\lambda}), \quad \lambda \in \mathbb{C} \\
& =z^{4}-2 \operatorname{Re}(\lambda) z^{3}+\left(|\lambda|^{2}-1\right) z^{2}+2 \operatorname{Re}(\lambda) z-|\lambda|^{2}
\end{aligned}
$$

Symmetric location of the roots (kite configuration) leads to nice reductions and interesting dynamics.

Two free critical points: $p_{\lambda}^{\prime \prime}=0$

$$
c_{ \pm}=\frac{1}{2}\left(\operatorname{Re}(\lambda) \pm \sqrt{(\operatorname{Re}(\lambda))^{2}-\frac{2}{3}\left(|\lambda|^{2}-1\right)}\right)
$$

Goal: Follow the orbits of $c_{ \pm}$as λ varies. If an extraneous attracting cycle exists, it must attract at least one of these orbits.

The Parameter Plane

If $\lambda=a+b i$, then the discriminant of the quadratic defining the two critical points $c_{ \pm}$is given by

$$
\delta=\frac{1}{3}\left(a^{2}-2 b^{2}+2\right)
$$

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

- $N_{\bar{\lambda}}=N_{\lambda}$ (symmetric about the real axis)

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

- $N_{\bar{\lambda}}=N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via $h(z)=-z$ (symmetric about the origin)

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

- $N_{\bar{\lambda}}=N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via $h(z)=-z$ (symmetric about the origin)
- Real axis is invariant under N_{λ}

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

- $N_{\bar{\lambda}}=N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via $h(z)=-z$ (symmetric about the origin)
- Real axis is invariant under N_{λ}
- For $\lambda \in \mathbb{R}, c_{ \pm}$converge to a root of p_{λ} (analytic proof)

Symmetry

Let $N_{\lambda}=N_{p_{\lambda}}$

- $N_{\bar{\lambda}}=N_{\lambda}$ (symmetric about the real axis)
- $N_{\lambda} \sim N_{-\lambda}$ via $h(z)=-z$ (symmetric about the origin)
- Real axis is invariant under N_{λ}
- For $\lambda \in \mathbb{R}, c_{ \pm}$converge to a root of p_{λ} (analytic proof)
- For $\lambda=\beta i, N_{\beta i} \sim N_{i / \beta}$. For this interesting case, we can restrict to a complicated 1-d real map with $0<\beta \leq 1$ (analytic work)

The Case $\lambda=\beta i$

$$
N_{\beta}(x)=\frac{3 x^{4}+\left(\beta^{2}-1\right) x^{2}+\beta^{2}}{4 x^{3}+2\left(\beta^{2}-1\right) x}
$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.

The Case $\lambda=\beta i$

$$
N_{\beta}(x)=\frac{3 x^{4}+\left(\beta^{2}-1\right) x^{2}+\beta^{2}}{4 x^{3}+2\left(\beta^{2}-1\right) x}
$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.

The Case $\lambda=\beta i$

$$
N_{\beta}(x)=\frac{3 x^{4}+\left(\beta^{2}-1\right) x^{2}+\beta^{2}}{4 x^{3}+2\left(\beta^{2}-1\right) x}
$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For $1 / \sqrt{3} \leq \beta<1, c_{+}$converges to -1 while c_{-}converges to 1 under iteration of N_{β}.

The Case $\lambda=\beta i$

$$
N_{\beta}(x)=\frac{3 x^{4}+\left(\beta^{2}-1\right) x^{2}+\beta^{2}}{4 x^{3}+2\left(\beta^{2}-1\right) x}
$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For $1 / \sqrt{3} \leq \beta<1, c_{+}$converges to -1 while c_{-}converges to 1 under iteration of N_{β}.
- For $\beta_{2}=(2 \sqrt{5}-3) / \sqrt{11} \approx 0.4438656912, c_{+}$and c_{-}lie on a super-attracting 2-cycle.

The Case $\lambda=\beta i$

$$
N_{\beta}(x)=\frac{3 x^{4}+\left(\beta^{2}-1\right) x^{2}+\beta^{2}}{4 x^{3}+2\left(\beta^{2}-1\right) x}
$$

- Free critical points are real and symmetric with respect to the origin. Thus, any extraneous attracting cycle for Newton's method must lie on the real axis.
- N_{β} is an odd function.
- For $1 / \sqrt{3} \leq \beta<1, c_{+}$converges to -1 while c_{-}converges to 1 under iteration of N_{β}.
- For $\beta_{2}=(2 \sqrt{5}-3) / \sqrt{11} \approx 0.4438656912, c_{+}$and c_{-}lie on a super-attracting 2-cycle.
- For odd periods, the free critical points can never lie on the same periodic orbit.

Figure: The orbit diagram for N_{β} with $\beta=(2 \sqrt{5}-3) / \sqrt{11} \approx 0.4438656912$ showing a super-attracting 2 -cycle between c_{+}and c_{-}.

Figure: The dynamical plane for Newton's method applied to $p_{\lambda}(z)=(z-1)(z+1)(z-\lambda)(z-\bar{\lambda})$ with $\lambda \approx 0.4438656912 i$. The "bad" initial seeds (black) iterate towards a super-attracting period 2-cycle.

Per	β	Type	Per	β	Type
2	0.4438657165	Bitransitive	5	0.2296915054	Disjoint
2	0.3835689425	Disjoint	5	0.2275660932	Disjoint
3	0.2291103601	Disjoint	5	0.2249682546	Disjoint
3	0.1341462433	Disjoint	5	0.1846443415	Disjoint
4	0.3642913699	Disjoint	5	0.1577119529	Disjoint
4	0.3363839984	Disjoint	5	0.1301919222	Disjoint
4	0.2158225775	Bitransitive	5	0.1289675832	Disjoint
4	0.2113012969	Disjoint	5	0.1125293225	Disoint
4	0.1134351641	Disjoint	5	0.0917167962	Disjoint
4	0.0616595671	Disjoint	5	0.0570865125	Disjoint
5	0.2299712598	Disjoint	5	0.0298646167	Disjoint

Table: The table of β values for which N_{β} has super-attracting periodic cycles. Also listed is the type of cycle: Bitransitive (free critical points on same orbit) or Disjoint (free critical points on separate orbits)

Figure: The bifurcation diagram for N_{β} showing the asymptotic behavior of both free critical points as a function of β. The horizontal line segments at the top and bottom of the figure are 1 and -1 .

Figure: The λ-parameter plane for N_{λ} following the orbit of both free critical points (shading indicates different rates of convergence.) The window is $[-1,1] \times[-i, i]$.

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, Experimental Mathematics 1, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, Experimental Mathematics 1, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- Bitransitive: Critical points attracted to same periodic orbit. Obtain swallow configurations and tricorns in a real cross-section of the parameter plane. Prototype models:
Swallow: $x \mapsto\left(x^{2}+c_{1}\right)^{2}+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R}$
Tricorn: $z \mapsto\left(z^{2}+c\right)^{2}+\bar{c}, \quad c \in \mathbb{C}$

A Connection to Cubic Maps

Remarks on Iterated Cubic Maps, John Milnor, Experimental Mathematics 1, no. 1, 5-24, 1992.

Suppose that both critical points are attracted to periodic cycles (not necessarily the same):

- Bitransitive: Critical points attracted to same periodic orbit. Obtain swallow configurations and tricorns in a real cross-section of the parameter plane. Prototype models:
Swallow: $x \mapsto\left(x^{2}+c_{1}\right)^{2}+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R}$
Tricorn: $z \mapsto\left(z^{2}+c\right)^{2}+\bar{c}, \quad c \in \mathbb{C}$
- Disjoint Periodic Sinks: Critical points attracted to different periodic orbits. Obtain product configurations and Mandelbrot sets in a real cross-section of the parameter plane. Prototype models:
Product: $x \mapsto x^{2}+c_{1}, y \mapsto y^{2}+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R}$ Mandelbrot Set: $z \mapsto z^{2}+c, \quad c \in \mathbb{C}$

Figure: An example of Milnor's "swallow configuration" in the parameter plane for N_{λ} centered at the bitransitive value $\lambda \approx 0.443865 \mathrm{i}$.

Figure: As expected (according to Milnor), a tricorn is located in the parameter plane at the inversion $(1 / \beta) i$ of the bitransitive value of the previous figure. In this case, the two free critical points are complex conjugates. The prototype for this case is the map $z \mapsto\left(z^{2}+c\right)^{2}+\bar{c}$.

Figure: Zooming in on the parameter plane near the a disjoint periodic value, $\lambda \approx 0.2291 \mathrm{i}$, exhibiting a "product" configuration.

Figure: The Mandelbrot-like set in the parameter plane arising from the inversion $(1 / \beta) i$ of our disjoint periodic value of the previous figure.

Some Final Observations

- Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.

Some Final Observations

- Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.
- The yellow diamond shaped boundary in the parameter plane is defined by those λ-values where both p_{λ}^{\prime} and $p_{\lambda}^{\prime \prime}$ simultaneously vanish. If $\lambda=a+b i$, this occurs on the algebraic curve

$$
\left(a^{2}-2 b^{2}+2\right)^{3}-27 a^{2}\left(b^{2}+1\right)^{2}=0 .
$$

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow "leaves" that approach the real axis.

Some Final Observations

- Conjecture: Each bitransitive λ-value corresponding to the two free critical points sharing the same super-attracting n-cycle lies at the center of a swallow configuration in the parameter plane.
- The yellow diamond shaped boundary in the parameter plane is defined by those λ-values where both p_{λ}^{\prime} and $p_{\lambda}^{\prime \prime}$ simultaneously vanish. If $\lambda=a+b i$, this occurs on the algebraic curve

$$
\left(a^{2}-2 b^{2}+2\right)^{3}-27 a^{2}\left(b^{2}+1\right)^{2}=0 .
$$

Taking successive pre-images of this curve appears to define the sequence of intertwining yellow "leaves" that approach the real axis.

Thank You for Your Attention

