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The Equilateral Triangle Solution of Lagrange

Lagrange (1772): Place three bodies, of any masses, at the vertices
of an equilateral triangle and apply the appropriate velocities to obtain
a special periodic solution. Each body traces out a circle centered at
the center of mass of the triangle. The shape and size of the
configuration is preserved during the motion.

Figure: The equilateral triangle solution of the three-body problem.
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The Planar, Circular, Restricted Four-Body Problem (PCR4BP)

Insert a fourth infinitesimal mass that has no influence on the circular
orbits of the three larger masses ("primaries"). Change to a rotating
coordinate system in a frame where the primaries are fixed. Let (x , y)
be coordinates for the infinitesimal mass in this new frame.

Equations of motion: (assume m1 + m2 + m3 = 1)

ẍ = 2ẏ + Vx

ÿ = −2ẋ + Vy

where

V (x , y) =
1
2

(
(x − cx)2 + (y − cy )2

)
+

m1

a
+

m2

b
+

m3

c

is the amended potential, (cx , cy ) is the center of mass of the
primaries and a, b, c represent the respective distances of the
infinitesimal mass from each of the three primaries.
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Figure: Setup for the planar, circular, restricted four-body problem.
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Two Finiteness Questions

V (x , y) =
1
2

(
(x − cx)2 + (y − cy )2

)
+

m1

a
+

m2

b
+

m3

c

ẍ = 2ẏ + Vx

ÿ = −2ẋ + Vy

Let ẋ = u, ẏ = v . Integral of motion:

E =
1
2
(u2 + v2)− V (Jacobi)

Note: Critical points of V are equilibrium points of the PCR4BP
("parking" spaces).

1 How do the location and number of critical points change as the
masses of the primaries are varied? Are there a finite number of
critical points for all choices of m1, m2 and m3?

2 Is it possible for a solution to the above equations to travel along a
level curve of V? (Saari’s Conjecture)
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Figure: The amended potential V for the case of three equal masses.
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Figure: Level curves of the amended potential V for the case of three equal
masses. There are 10 critical points — 6 saddles and 4 minima.
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Using Distance Coordinates

Treat the distances a, b, c as variables:

x =

√
3

6

(
b2 + c2 − 2a2

)
y =

1
2

(
c2 − b2

)
subject to the constraint

F = a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) = −1

(Cayley-Menger Determinant). In these new coordinates, the amended

potential function becomes

V =
1
2

(
m1a2 + m2b2 + m3c2

)
+

m1

a
+

m2

b
+

m3

c
+ constant.
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Equations for the Critical Points

m1(1−
1
a3 ) + 2λ(2a2 − b2 − c2 − 1) = 0 (1)

m2(1−
1
b3 ) + 2λ(2b2 − a2 − c2 − 1) = 0 (2)

m3(1−
1
c3 ) + 2λ(2c2 − a2 − b2 − 1) = 0 (3)

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) = −1

Summing equations (1), (2) and (3) yields

λ =
1
6

(
1− m1

a3 − m2

b3 − m3

c3

)
.
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Eliminating λ

2a5b3c3 − 2m3a5b3 − 2m2a5c3 − a3b5c3 + m3a3b5 − a3b3c5

+(3m1 − 1)a3b3c3 + m3a3b3c2 + m3a3b3 + m2a3b2c3 + m2a3c5

+m2a3c3 − 2m1a2b3c3 + m1b5c3 + m1b3c5 − 2m1b3c3 = 0

2a3b5c3 − 2m3a3b5 − 2m1b5c3 − a5b3c3 + m3a5b3 − a3b3c5

+(3m2 − 1)a3b3c3 + m3a3b3c2 + m3a3b3 + m1a2b3c3 + m1b3c5

+m1b3c3 − 2m2a3b2c3 + m2a5c3 + m2a3c5 − 2m2a3c3 = 0

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) + 1 = 0

Symmetry: a ↔ b, m1 ↔ m2
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Equal Mass Case

Theorem
(GR, JK, CS 2007) The number of critical points in the PCR4BP for
equal masses is exactly 10.

Proof: Due to the equal masses, it is possible to show that all critical
points must lie on an altitude of the equilateral triangle (a = b, a = c or
b = c). This reduces the problem down to two equations in two
unknowns. Using Gröbner bases (or resultants), we obtain a 22
degree polynomial that contains 5 positive real roots. Of these 5, three
correspond to physically relevant solutions of the original equations.
By symmetry, this gives a total of 9 critical points. The 10th is found at
the origin, where all three altitudes intersect.

Remark: This result is subsumed by numerical and analytic work of
Pedersen (1944), Simó (1978), Arenstorf (1982) and Leandro (2006).
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Figure: The 10 equilibria for the PCR4BP in the case of equal masses. Note
the symmetry with respect to the equilateral triangle of the primaries.
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Theorem
(GR, JK, CS 2007) The number of critical points in the PCR4BP is
finite for any choice of masses. In particular, there are less than 268
critical points.

Remark: Our result showing finiteness appears to be new. The upper
bound of 268 is not optimal as the work of Pedersen (1944), Simó
(1978), Arenstorf (1982) and Leandro (2006) suggests the actual
number varies between 8 and 10. It is a surprisingly complicated
problem to study the bifurcation curve in the mass parameter space for
which there are precisely 9 critical points.
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BKK Theory

Bernstein, D. N., The Number of Roots of a System of Equations,
Functional Analysis and its Applications, 9, no. 3, 183-185, 1975.

Given f ∈ C[z1, . . . zn], f =
∑

ckzk , k = (k1, k2, . . . , kn), the Newton
polytope of f , denoted N(f ), is the convex hull in Rn of the set of all
exponent vectors occurring for f .

Given α = (α1, . . . , αn) with αi ∈ Q, the reduced polynomial fα is the
sum of all terms of f whose exponent vectors k satisfy

α · k = min
l∈N(f )

α · l .

This equation defines a face of the polytope N(f ) with inward pointing
normal α.

Let T = (C∗)n where C∗ = C− {0}.
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Theorem
(Bernstein, 1975) Suppose that system (4) has infinitely many
solutions in T. Then there exists a vector α = (α1, . . . , αn) with αi ∈ Q
and αj = 1 for some j, such that the system of reduced equations (5)
also has a solution in T (all components nonzero).

f1(z1, . . . , zn) = 0
f2(z1, . . . , zn) = 0

... (4)
fm(z1, . . . , zn) = 0,

f1α(z1, . . . , zn) = 0
f2α(z1, . . . , zn) = 0

... (5)
fmα(z1, . . . , zn) = 0.
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The "big Minkowski"

Key Fact: Bernstein argues that it is sufficient to check a finite number
of vectors α since different vectors can induce the same reduced
equations. Using the Minkowski sum polytope

N(f1) + N(f2) + · · ·+ N(fm) = {v ∈ Rn : v = v1 + · · ·+ vm, vi ∈ N(fi)},

only the inward normals of each facet of this "big Minkowski" need be
considered. We must also examine the reduced equations for "faces"
of codimension greater than one. If all such α’s fail to yield a nontrivial
solution (all components nonzero), then Bernstein’s theorem shows
that the number of solutions to the system is finite.
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Figure: The Minkowski sum polytope corresponding to the three equations for
the critical points of V .
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Good Example

Choose α =< 0, 1, 1 >

Reduced equations:

−2m3a5b3 − 2m2a5c3 + m3a3b3 + m2a3c3 = 0
m3a5b3 + m2a5c3 + m3a3b3 − 2m2a3c3 = 0

a4 − a2 + 1 = 0

Gröbner basis: {a4 − a2 + 1, m3b3, m2c3}

No solutions in T means this α is excluded. Yay!
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Difficult Example

Choose α =< 1, 0, 0 >

Reduced equations:

m1b5c3 + m1b3c5 − 2m1b3c3 = 0

−2m1b5c3 + m1b3c5 + m1b3c3 = 0

b4 + c4 − b2c2 − b2 − c2 + 1 = 0

Problem: b = ±1, c = ±1 and a 6= 0 is a nontrivial solution to the
reduced equations. Boo! Bernstein’s Theorem doesn’t help.
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Puiseux Series

Hampton, M. and Moeckel, R., Finiteness of relative equilibria of the
four-body problem, Inventiones mathematicae 163, 289-312, 2006.

Puiseux series (complex) :

x(t) =
∞∑

i=i0

ai t
i
q , q ∈ N, i0 ∈ Z

If a system of n polynomial equations has an infinite variety in T, then
there exists a convergent Puiseux series solution xj(t), j = 1, . . . n with
order α. Moreover, one of the variables is simply xl(t) = t .

The order of the Puiseux series solution is the vector of rationals
arising from the fractional exponent of the first term in each series.
This vector α is precisely the same α of Bernstein’s theorem.
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Good News

Minkowski sum polytope for our system has 14 facets, 12 vertices
and 24 edges.
Using symmetry and ignoring those inward normals with all
coordinates non-positive, only two inward normals remain that
have reduced equations with nontrivial solutions: α1 =< 1, 0, 0 >
and α2 =< 0, 0, 1 >.
For each "bad" α, we can substitute Puiseux series in t into the
original equations (a = t for α1 and c = t for α2), and show that no
such series solution can exist by examining higher order terms in t
(Implicit Function Theorem).
Of the 15 edges that need to be examined, most have reduced
equations with either no solution or a trivial solution. The others
can be eliminated using symmetry.
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Final Remarks and Future Work

The vertices of the Minkowski sum polytope (faces of codimension
3) are quickly eliminated since they yield at least one reduced
equation with a single monomial, and thereby a trivial solution.
This completes the proof of finiteness.
The lower bound of 268 for the number of critical points is
obtained by computing the mixed volume of the polytopes
corresponding to our system of equations (Bernstein).
What about solutions traveling on level curves? Hopefully similar
techniques will show this is impossible, but polynomials are much,
much larger (over 10,000 terms).
Additional problem: PCRnBP with equal mass primaries on a
regular n-gon. Applications to the charged n-body problem?
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