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Applications to other Areas

Motion of n point vortices
Mechanical systems involving a potential function dependent
solely on mutual distances
Hamiltonian systems
Systems with integrals
Systems with symmetric periodic orbits
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The Planar n-Body Problem

mi = mass of the i-th body
qi = position of the i-th body in R2

pi = mi q̇i (momentum)
rij = ||qi − qj ||

q = (q1, . . . , qn) ∈ R2n

p = (p1, . . . , pn) ∈ R2n

M = diag {m1, m1, m2, m2, . . . , mn, mn}

Newtonian potential function:

U(q) =
n∑

i<j

mimj

rij
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Equations of motion:

mi q̈i =
∂U
∂qi

, i ∈ {1, 2, . . . n}

=
n∑

i 6=j

mimj(qj − qi)

r3
ij

Hamiltonian system:

q̇ = M−1p =
∂H
∂p

ṗ = ∇U(q) = −∂H
∂q

H(q, p) = K (p)− U(q)

K (p) =
n∑

i=1

||pi ||2

2mi
Kinetic Energy
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Equilibria?

For (q, 0) to be an equilibrium point, ∇U(q) = 0.

U(q) =
n∑

i<j

mimj

rij

But, U is a homogeneous potential of degree -1

∇U(q) · q = −U(q) < 0

Therefore, there are no equilibrium points.
Physically, this is to be expected.
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Definition
The position vector x is a central configuration (CC) if there is some
positive valued scalar function r(t) such that

q(t) = r(t) x

is a solution to the n-body problem. The vector x may consist of
collinear, planar or spatial positions.

Substituting this into the second order equation

Mq̈ = ∇U(q)

gives
M r̈ x = ∇U(r x) = r−2∇U(x). (1)

Taking the dot product of (1) with x gives:

r̈ = − µ

r2 , µ =
U(x)∑
mi ||xi ||2

.
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Given a solution to the scalar ODE

r̈ = − µ

r2 1d Kepler problem

for some µ, the position vector x must satisfy

∇U(x) + µ Mx = 0. (2)

Thus, x is a central configuration if it satisfies equation (2) for
some constant µ.

While the ODE for r(t) is straight-forward, the system (2) of
nonlinear algebraic equations for x is extremely challenging!

r(t) = c t2/3 with c3 = 9µ/2 is a solution to the scalar ODE for r(t)
(homothetic solution arising from collision).
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Periodic Solutions

Complexify and guess a solution of the form

q(t) = φ(t) x with φ(t) ∈ C, x ∈ Cn

This leads to
φ̈ = −µ|φ|

φ3 2d Kepler problem

and
∇U(x) + µ Mx = 0. (3)

Given a planar CC x satisfying equation (3), attaching a particular
solution of the Kepler problem to each body yields a solution to the full
n-body problem.

Rigid rotations (same shape and size)
Elliptical periodic orbits (same shape, oscillating size)
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Definition
A relative equilibrium for the n-body problem is a solution of the form

q(t) = R(ωt)x

(a rigid rotation) where

R(t) =

[
cos t − sin t
sin t cos t

]
and

R(t)q = (R(t)q1, R(t)q2, . . . , R(t)qn).

In order to have a relative equilibrium:
x must be a planar cc, that is, ∇U(x) + µ Mx = 0

ω2 = µ = U(x)P
mi ||xi ||2

(rotation speed determined by x)
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3-Body Collinear Configuration (Euler 1767)

~ ww

q v~
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Equilateral Triangle (Lagrange 1772)
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Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize)
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Rotating Coordinates

Let J =

[
0 1

−1 0

]
and thus e ωJt =

[
cos ωt sin ωt
− sin ωt cos ωt

]
Changing to uniformly rotating coordinates with period 2π/ω via

xi = e ωJtqi , yi = e ωJtpi

yields the autonomous Hamiltonian system

ẋ = ωJx + M−1y =
∂Ĥ
∂y

ẏ = ∇U(x) + ωJy = −∂Ĥ
∂x

where J = diag {J, J, . . . , J} and

Ĥ(x, y) = K (y)− U(x) + ωxTJy.

Gareth Roberts (College of the Holy Cross) On Linear Stability in the N-Body Problem I, II and III 2007 NCTS Dynamics 15 / 78



The new term added to the Hamiltonian, ωxTJy is known as the
Coriolis force.
An equilibrium point in rotating coordinates (x, y) must satisfy

y = −ωMJx
∇U(x) = ω2JMJx = −ω2Mx (4)

Equation (4) says that x is a planar cc (as expected)
The values in the momentum vector y are the precise set of
velocities that allow for an exact circular solution.
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Degeneracies∑
i 6=j

mimj(xj − xi)

r3
ij

+ ω2 mixi = 0 (5)

x = (x1, x2, . . . , xn) is a relative equilibrium implies that

cx = (cx1, cx2, . . . , cxn) and

Rx = (Rx1, Rx2, . . . , Rxn)

are relative equilibria where c is a constant and R ∈ SO(2).

The moment of inertia I(x) is defined as

I(x) =
1
2

n∑
i=1

mi‖xi‖2

Equation (5) for a relative equilibrium can be viewed as a Lagrange
multiplier problem: (I(x) = k )

∇U(x) + ω2∇I(x) = 0.
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A Topological Viewpoint

Let S be the ellipsoid defined by 2I = 1 (fixes scaling). Define an
equivalence relation via x ∼ Rx, R ∈ SO(2) (identify rotationally
equivalent relative equilibria).

Critical points of U([x]) on S/ ∼ are relative equilibria.

Smale/Wintner/Chazy Question: For a given set of positive masses, is
the number of relative equilibria equivalence classes finite? (Smale’s
6th problem for the 21st century)

n = 3 Euler, Lagrange
n!
2 Collinear CC’s Moulton
4 Equal masses Albouy (1995)
n = 4 Hampton and Moeckel (2006)
n ≥ 5 Open problem
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Linear Stability of Relative Equilibria

ẋ = ωJx + M−1y
ẏ = ∇U(x) + ωJy

A =

[
ωJ M−1

D∇U(x) ωJ

]
Suppose that v is an eigenvector of A with eigenvalue λ, and write
v = (v1, v2) with v1, v2 ∈ C2n. Av = λv becomes

v2 = M(λI − ωJ)v1

Bv1 = 0

where
B = M−1D∇U(x) + (ω2 − λ2)I + 2λωJ.

The characteristic polynomial for A is

P(λ) = det
[
M−1D∇U(x) + (ω2 − λ2)I + 2λωJ

]
.
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Taking the transpose of B shows that P(λ) = P(−λ). Thus, we require
pure imaginary eigenvalues for linear stability.

Integrals of Motion

1 The subspace W1 of C4n spanned by the four vectors

(u, 0), (0, Mu), (v, 0), (0, Mv)

where u = (1, 0, 1, 0, . . .) and v = (0, 1, 0, 1, . . .) is invariant under
A with eigenvalues ±iω,±iω corresponding to the the center of
mass and total linear momentum integrals.

2 The subspace W2 of C4n spanned by the four vectors

(x, 0), (0, Mx), (Jx, 0), (0, JMx)

is invariant under A with eigenvalues 0, 0,±iω corresponding to
the angular momentum integral and the fact that any relative
equilibrium x is not isolated under scaling or rotation.
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Definition
A relative equilibrium x is non-degenerate if the remaining 4n − 8
eigenvalues are nonzero. It is spectrally stable if the eigenvalues are
pure imaginary and is linearly stable if in addition, the restriction of
the matrix A to the skew-orthogonal complement of W1 ∪W2 is
diagonalizable.

Skew-inner product: Ω(v, w) = vTJ w J =

[
0 I
−I 0

]
Skew-orthogonal complement of W :

W⊥ = {v ∈ C4n : Ω(v, w) = 0 ∀w ∈ W}

W is an invariant subspace for a Hamiltonian matrix A iff W⊥ is
also invariant under A.
Meyer and Schmidt (JDE 2005) show that it is possible to give a
symplectic coordinate system that nicely decouples the above
problem into three subsystems: W1, W2 and (W1 ∪W2)

⊥
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Results on Linear Stability of Relative Equilibria

Collinear (Andoyer 1906, M. G. Meyer 1933, Conley)
Unstable for any choice of masses
Equilateral Triangle (Gascheau 1843, Routh 1875)

27(m1m2 + m1m3 + m2m3) < (m1 + m2 + m3)
2

Regular n-gon is unstable for all n (Moeckel 1995)
Regular n-gon with a central mass m
(Maxwell 1859, Moeckel 1994, Elmabsout 1994, GR 1997)
Stable for n ≥ 7 when m > 0.435n3

Rhombus is unstable (Ouyang, Xie 2006)
Moeckel’s dominant mass conjecture:
For a relative equilibrium to be linearly stable, it must have a
dominant mass.
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Oscillation Speed

Suppose that λ = α + iβ is an eigenvalue of a relative equilibrium with
corresponding eigenvector v = (v1, v2).

Ω(v, v̄) = −2(iβ vT
1 Mv̄1 + ω vT

1 JMv̄1). (6)

Let v1 = (u1, . . . , un) with each component uk ∈ C2 written as
uk = (ak + i bk , ck + i dk ). Formula (6) reduces to

− 1
2i

Ω(v, v̄) =

(
β

n∑
k=1

mk ||uk ||2 − iω
n∑

k=1

mk uT
k J ūk

)

= β

n∑
k=1

mk (a2
k + b2

k + c2
k + d2

k )

+ ω

n∑
k=1

2mk (bkck − akdk ).
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If |β| > ω, then we can conclude that Ω(v, v̄) 6= 0. However, if α 6= 0,
then Ω(v, v̄) = 0 for any corresponding eigenvector v.

Theorem
(GR 1999) Let A be the Hamiltonian matrix corresponding to a relative
equilibrium x and suppose that A has an eigenvalue λ = α + iβ with
α 6= 0. Then β satisfies |β| ≤ ω. Moreover, if |β| = ω, then each
component of the positional part of the corresponding eigenvector
must be a complex multiple of the vector [1, i].

Consequence: On the stable and unstable manifolds of a relative
equilibrium, solutions oscillate at a slower rate than the periodic
solution itself. A slight perturbation in an unstable direction forces the
bodies to take longer to come back near their initial positions than in
the unperturbed case.
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A method for factoring P(λ)

Recall: The characteristic polynomial of a relative equilibrium x is

P(λ) = det
[
M−1D∇U(x) + (ω2 − λ2)I + 2λωJ

]
(7)

The orthogonal complement of W with respect to M is

W⊥ = {v ∈ R2n : vTM w = 0 ∀w ∈ W}

Theorem
(Moeckel 1995) Suppose that W ⊂ R2n is an invariant subspace for
both M−1D∇U(x) and J. Then P(λ) = P1(λ)P2(λ), where P1, P2 are
given by equation (7) with the matrices involved restricted to the
subspaces W and W⊥, respectively. Moreover, P1 and P2 are both
even polynomials.
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Could the Earth Have Rings?

Suppose that the moon was suddenly split into n equal pieces, with
each “new” moon landing close to a vertex of a regular n-gon with the
Earth at its center. Could such a configuration be stable?

NO, unless n ∈ {7, 8, . . . , 13}.
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The 1 + n-gon Relative Equilibrium
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Theorem
(GR ‘97) For n ≥ 7, the 1 + n-gon relative equilibrium is linearly stable
iff m > hn. Moreover,

lim
n→∞

hn

n3 =
13 + 4

√
10

2π3 ·
∞∑

k=1

1
(2k − 1)3

≈ 0.435036581297.

For n even,

hn = 26An − 4Bn −
σn

2
+ 4
√

(5An − Bn)(8An − Bn)

An =
n−1∑

k odd

1
8 sin3(πk/n)

Bn =
n−1∑

k odd

1
2 sin(πk/n)

σn =
n−1∑
k=1

1
2 sin(πk/n)
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Rings around the Earth?

m earth
m moon

≈ 81

Breaking the moon into n equal parts with mi = 1 means that the
central mass (Earth) is m = 81n.

However, for the stable case n ≥ 7,

81n > 0.435n3 only for 7 ≤ n ≤ 13

Thus, the Earth will not be heavy enough to sustain a stable ring for
n > 13.
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Finding Invariant Subspaces for the 1 + n-gon

Let θk =
2πk

n
, k ∈ {1, . . . , n}.

Then, x = ((0, 0), x1, . . . , xn) with xk = (cos θk , sin θk ), k ∈ {1, . . . , n} is
a relative equilibrium with masses mk = 1 ∀k 6= 0 and m0 = m.

Let Ul = span{ul , Jul}, where ul = ((0, 0), u1l , . . . , unl) and
ukl = eiθkl xk , (θkl = 2πkl/n).

For each l ∈ {2, 3, . . . , [n/2]}, Ul is a two-dimensional complex
invariant subspace for M−1D∇U(x).

However, when l = 1, this perturbation does not leave the central mass
fixed at the origin. (This point was overlooked by Maxwell.) Instead of
(0, 0), the first component of u1 must be (−n/(2m),−in/(2m)).
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For l ≥ 2, the restriction of the operator M−1D∇U(x) to the subspace
Ul is [

Pl − 3Ql + 2m −iRl
iRl Pl + 3Ql −m

]
where

Pl =
n−1∑
k=1

1− cos θk cos θkl

2r3
nk

, Ql =
n−1∑
k=1

cos θk − cos θkl

2r3
nk

and

Rl =
n−1∑
k=1

sin θk sin θkl

2r3
nk

.

When l = 1, we obtain the matrix[
P1 + 2m + n −i(R1 − n)
i(R1 + n/2) P1 −m − n/2

]
.
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Outline of Proof

1 Take real and imaginary parts of ul and Jul to derive subspaces of
R2(n+1) which are invariant under M−1D∇U(x) and J.

2 Use these subspaces to factor P(λ) completely into 4th and 8th
degree polynomials. These polynomials are also even.

3 Derive necessary and sufficient conditions for linear stability
based on the coefficients of these polynomials.

4 Examine how these conditions depend on the central mass m and
locate a bifurcation value hn where the 1 + n-gon becomes linearly
stable.

5 Do asymptotics on hn.

Note: It turns out that for n odd, the bifurcation value hn is the root of a
fifth degree polynomial in m. However, we are able to estimate hn by
bounding it below and above by quantities which are asymptotic to the
same thing.
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Some Concluding Remarks

1 The n ≥ 7 requirement comes from the perturbation for l = 1
which moves the central mass. For 3 ≤ n ≤ 6, no matter how
large the central mass, the eigenvalues from this invariant
subspace are always off the imaginary axis.

2 As l increases, the invariant subspaces correspond to
perturbations with more and more twisting of the ring, thus
requiring a larger central mass for stability.

3 In the case n is even, the final perturbation (l = n/2) before
achieving stability alternates between pushing bodies directly
toward or away from the central mass. Remarkably, Maxwell
guessed this invariant subspace and calculated τ to be 0.4352 in
1859.

4 Calculating linear stability of relative equilibria analytically is a
hard but useful problem!
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Outline for Second Talk

1 Equal Mass Case and Moeckel’s Dominant Mass Conjecture
2 Example: Elliptic Lagrange Triangle Periodic Solutions

(This last topic was covered with hand-written transparencies.)
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Definition
A relative equilibrium for the n-body problem is a solution of the form

q(t) = R(ωt)x

(a rigid rotation) where

R(t) =

[
cos t − sin t
sin t cos t

]
and

R(t)q = (R(t)q1, R(t)q2, . . . , R(t)qn).

In order to have a relative equilibrium:
x must be a planar cc, that is, ∇U(x) + µ Mx = 0

ω2 = µ = U(x)
2I(x) where I(x) = 1

2
∑

mi ||xi ||2
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Linear Stability of Relative Equilibria

Let J =

[
0 1

−1 0

]
, J = diag {J, J, . . . , J} and

B = M−1D∇U(x) + (ω2 − λ2)I + 2λωJ.

The characteristic polynomial for a relative equilibrium is
P(λ) = det(B) .

P(λ) is even. Thus we require the eigenvalues to be purely
imaginary to have linear stability.
8 eigenvalues always appear: 0, 0,±iω,±iω,±iω arising from the
integrals of the planar n-body problem. Linear stability is
determined by the remaining 4n − 8 eigenvalues.
The only known examples of linearly stable relative equilibria (eg.
equilateral triangle, 1 + n-gon) contain a dominant mass.

Goal: Show that equal mass relative equilibria are always unstable.
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The 2× 2 diagonal blocks of B are given by[
di i + ω2 − λ2 di i+1 + 2λω

di+1 i − 2λω di+1 i+1 + ω2 − λ2

]
where dij is the ij-th entry of M−1D∇U(x).

Therefore P(λ) = λ4n + (2n ω2 − tr(M−1D∇U(x))λ4n−2 + · · · which
implies

1
2

4n∑
i=1

λ2
i = tr(M−1D∇U(x))− 2n ω2

where λi is an eigenvalue of A.

Direct calculation reveals:

tr(M−1D∇U(x)) =
n∑

i<j

mi + mj

r3
ij

.

Gareth Roberts (College of the Holy Cross) On Linear Stability in the N-Body Problem I, II and III 2007 NCTS Dynamics 37 / 78



Theorem
(GR 1999) One-half of the sum of the squares of the eigenvalues of a
relative equilibrium x with rotation speed ω = U(x)/2I(x) is given by∑

i<j

mi + mj

r3
ij

− 2n ω2

Corollary
(GR 1999) A necessary condition for a relative equilibrium x to be
spectrally stable is ∑

i<j

mi + mj

r3
ij

< (2n − 3)
U(x)

2I(x)
.

Example: This inequality is not satisfied by the regular n-gon relative
equilibrium for n ≥ 7 (quick proof of instability).
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Fix the scaling of a relative equilibrium x so that

2I(x) =
∑

mi ||xi ||2 = 1 (mass ellipsoid)

A necessary condition for stability is then∑
i<j

mi + mj

r3
ij

< (2n − 3)
∑
i<j

mimj

rij
. (8)

Problem: The more bodies we consider, the closer they become on
the mass ellipsoid. The left-hand side of (8) begins to dominate the
right-hand side, leading to instability.

Theorem
(GR 1999) Any relative equilibrium of n equal masses is not spectrally
stable for n ≥ 24, 306.
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Proof Outline:

Set mi = 1 for each i : ∑
i<j

1
r3
ij

<
n
2I

∑
i<j

1
rij

This motivates setting 2I = c n, (with c < 1 to be chosen optimally)

n∑
i=1

‖xi‖2 = c n

giving a bound on the distance bodies can be from the origin. In fact,
[n(1− c)] bodies ([?] = greatest integer) are guaranteed to be inside
the unit disk D.
To prove instability, it suffices to show∑

i<j

1
r3
ij
− 1

c rij
> 0.
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Let fc(r) = 1
r3 − 1

cr . Let Kε be the number of regions of diameter ε

needed to cover the unit disk D with ε <
√

c. Let

Nc,ε =

[
[n(1− c)]

Kε

]
be the approximate number of bodies in each ε-region (if they were to
be evenly distributed). For ε sufficiently small, these mutual distances
contribute positively to our instability inequality.

Let Pc be a lower bound on the number of mutual distances <
√

c.

∑
i<j

1
r3
ij
− 1

c
· 1

rij
> fc(ε) · Kε

(
Nc,ε

2

)
− γc

((
n
2

)
− Pc

)
= Ac,ε n2 + Bc,ε n (9)
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Choose ε small enough and c large enough to make sure that the
coefficient in front of n2 is positive and the positive root n = n̂ of
the quadratic (9) is as small as possible ( ε = 0.029255,
c = 0.370093). This gives n̂ ≈ 26, 000.
Further fine tuning (accounting for leftover mutual distances from
an equal distribution) gets the minimum possible value of n down
to 24, 306.
This is clearly not the optimal result, as it is expected that none of
the equal mass relative equilibria are spectrally stable. However,
the stability inequality is indeed satisfied for certain equal mass
configurations for small n even though these relative equilibria are
unstable. (ie. our condition is necessary but not sufficient)
One can use the same arguments to show that the collinear equal
mass relative equilibria are unstable for n ≥ 22.
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Outline for Third Talk

1 Symmetry in Hamiltonian Systems
2 Variational Methods
3 Example: Figure-eight Orbit
4 Other Orbits
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Some Quotes

You can go a long way just knowing Linear Algebra and Calculus.
- Rick Moeckel, speaking to grad students in his Introduction to

Classical Mechanics class, April 5, 2004.

How the heck can that thing be stable?!
- Jim Walsh, November 2003.

All the choreographies found [in the n-body problem], except the
eight, are unstable.

- Carles Simó in New families of Solutions in N-Body Problems,
Proceedings of the ECM 2000, Barcelona (July, 10-14).
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Variational Methods

Goal: Find special planar periodic solutions using Hamilton’s principle
of least action.

Let Σ = {q ∈ R2n : qi = qj for some i 6= j} (collision set). The
configuration space for the n-body problem is R2n − Σ. Let ΓT denote
the space of all absolutely continuous loops of period T in R2n − Σ.

The action of a path γ ∈ ΓT is

A(γ) =

∫ T

0
K (γ̇(t)) + U(γ(t)) dt

For the problem to be feasible, we need to restrict our paths to special
classes, eg. by imposing symmetry or homotopical constraints.

Since K ≥ 0 and U > 0, A(γ) > 0. Moreover, as γ → Σ, U(γ) →∞.
Therefore, we typically seek to minimize the action.
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Problems Using Variational Methods
The configuration space R2n − Σ is not compact.

1 Minima might not exist. w

w

w
w

w
w

�3

Qs

Qk

�+

?

6

2 A minimizing trajectory may contain collisions. This occurs in the
Kepler problem where the minimizing solution is independent of
the eccentricity. The ejection/collision solution is an action
minimizer (Gordon).
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Theorem
(Chenciner, Montgomery 2000) There exists a figure-eight shaped
curve q : (R/TZ) 7→ R2 such that

1 q(t) + q(t + T/3) + q(t + 2T/3) = 0 ∀t
(center of mass is at the origin.)

2 Symmetry

q(t + T/2) = −q̄(t), q(−t + T/2) = q̄(t) ∀t

3 (q(t + 2T/3), q(t + T/3), q(t)) is a zero angular momentum,
periodic solution to the planar 3-body problem with equal masses.

A solution where the n bodies follow each other along a single closed
curve with equal phase shift is called a choreography.
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Proof Outline:
Construct the orbit on the shape sphere, the space of oriented
triangles.

1 Search for minimizers over the class of paths Γ traveling from an
Euler central configuration (with say q3 at the center) to an
isosceles configuration (with say r12 = r13). This path will be
1/12th of the full periodic orbit.

2 Let Ac be the smallest possible action for a path with collisions in Γ
(compute via Kepler problem). Choose a simple test path
(constant speed and potential) and compute its action A
(numerically). Collisions are excluded by showing A < Ac .

3 The boundary terms of the first variation (integration by parts) and
the symmetries induced by equality of masses allows for eleven
copies of the minimizer to be fit together to create the full orbit.

4 A special area formula is used to reconstruct the motion in the
phase space. By showing that the angular momentum of any one
of the bodies vanishes only as the body passes through the origin,
this implies the curve is a figure eight.
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Figure: The first 12th of the figure-eight orbit (dotted), traveling from an Euler
collinear central configuration to an isosceles triangle.
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Why is the linear stability of the figure-eight so surprising?

The regular n-gon circular choreographies (equal mass) are all
unstable.
The Lagrange equilateral triangle solution is linearly stable only
when one mass dominates the others.
If n ≥ 24, 306, all equal mass relative equilibria are unstable.
The 1 + n-gon relative equilibrium is linearly stable iff the central
mass is at least 0.435n3.
All other known choreographies appear to be unstable.

On the other hand: Adding eccentricity to an unstable relative
equilibrium could make it linearly stable (eg. Lagrange equilateral
triangle)
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Linear Stability of Periodic Orbits

Set J =

[
0 I
−I 0

]
. Suppose ζ(t) is a T -periodic solution to the

Hamiltonian system ż = J∇H(z). The associated linear system is

ξ̇ = JD2H(ζ(t)) ξ, ξ(0) = I

The fundamental matrix solution X (t) satisfies X (t + T ) = X (t) X (T ).

X (T ) is the monodromy matrix, measuring the non-periodicity of
solutions to the linearized equations. Its eigenvalues, the
characteristic multipliers, determine the stability of the periodic
solution.

X (T ) is a symplectic matrix with multipliers symmetric with respect to
the unit circle. Linear stability requires all of the multipliers to be on the
unit circle.
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Recall: Each integral yields a multiplier of +1. For example, the
monodromy matrix has two 2× 2 Jordan blocks of the form[

1 1
0 1

]
arising from the integrals due to the center of mass and total linear
momentum.

Center of mass, total linear momentum (4)
SO(2) symmetry, angular momentum (2)
Hamiltonian (1)
Periodic orbit (1)

Definition: A periodic solution of the planar n-body problem has 8
trivial characteristic multipliers of +1. The solution is spectrally stable
if the remaining multipliers lie on the unit circle and linearly stable if in
addition, X (T ) restricted to the reduced space is diagonalizable.
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Reductions Using Symmetry

Lemma
(Time-forward Symmetry) Suppose that γ(t) is a a symmetric
T -periodic solution of a Hamiltonian system with Hamiltonian H and
symmetry matrix S such that

1 for some N ∈ N, γ(t + T/N) = Sγ(t) ∀t
2 H(Sx) = H(x)

3 SJ = JS
4 S is orthogonal.

Then the fundamental matrix solution X (t) to the linearization problem
ξ̇ = JD2H(γ(t)) ξ, ξ(0) = I satisfies

X (t + T
N ) = SX (t)STX (T

N )

and
X (kT

N ) = Sk (STX (T
N ))k ∀ k ∈ N.
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Lemma
(Time-reversing Symmetry) Suppose that γ(t) is a T -periodic
solution of a Hamiltonian system with Hamiltonian H and
time-reversing symmetry S such that

1 for some N ∈ N, γ(−t + T/N) = Sγ(t) ∀t
2 H(Sx) = H(x)

3 SJ = −JS
4 S is orthogonal.

Then the fundamental matrix solution X (t) to the linearization problem
ξ̇ = JD2H(γ(t)) ξ, ξ(0) = I satisfies

X (−t + T
N ) = SX (t)STX (T

N ).

and
X (T

N ) = SB−1STB where B = X ( T
2N ).
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Definition
A choreography is a planar T -periodic solution of the n-body problem
where all bodies follow the same loop q(t) with equal time spacing.
γ(t) = (q(t + n−1

n T ), q(t + n−2
n T ), · · · , q(t + T

n ), q(t)) is a solution,
where q(t + T ) = q(t).

Let σ be the 2n × 2n permutation matrix determined by

σ(q1, q2, · · · , qn)
T = (qn, q1, q2, · · · , qn−1)

T

It follows that:
γ(t + T/n) = σγ(t) ∀t
Assuming equal masses, H(σq, σq̇) = H(q, q̇).

Let P =

[
σ 0
0 σ

]
. P is orthogonal, symplectic, commutes with J

and Pn = I.
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Theorem
(GR 2007) Suppose that γ(t) is a choreography and let X (t) be the
fundamental matrix solution to the linearized equations about γ(t).
Then the monodromy matrix for γ is

(PTX (T
n ))n where P =

[
σ 0
0 σ

]
.

Lemma
Let A be the fundamental matrix solution evaluated over the first piece
of the orbit, A = X (T/n). Then

X (kT
n ) = Pk (PTA)k

Note: Since we want the eigenvalues to be on the unit circle, the linear
stability analysis reduces to studying the symplectic matrix PTX (T

n ).
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Jacobi Coordinates

Set mi = 1 ∀i .
Recall: qi = position, pi = q̇i = momentum

u1 = 1√
2
(q3 − q2) v1 = 1√

2
(p3 − p2)

u2 =
√

2
3(q1 − 1

2(q2 + q3)) v2 =
√

2
3(p1 − 1

2(p2 + p3))

u3 = 1
3(q1 + q2 + q3) v3 = p1 + p2 + p3.

Set u3 = v3 = 0. Inertia becomes

I = ||u1||2 + ||u2||2

New Hamiltonian:

H(u, v) = 1
2(||v1||2 + ||v2||2)− 1

r12
− 1

r13
− 1

r23
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Shape Sphere Coordinates

Use the Hopf map and choose the conjugate coordinates carefully:

w1 = ||u1||2 − ||u2||2 z1 = 1
2I (u1 · v1 − u2 · v2)

w2 = 2(u1 · u2) z2 = 1
2I (α u1 · v1 − β u2 × v2 + u1 · v2)

w3 = 2(u1 × u2) z3 = 1
2I (β u1 · v1 + α u2 × v2 + u1 × v2)

w4 = arg(u1) z4 = u1 × v1 + u2 × v2

where α = (u1 · u2)/||u1||2 and β = (u1 × u2)/||u1||2.

z4 is angular momentum; set z4 = c.

H(w , z) = K (z)I(w)− U(w) +
c

I + w1
(c + 2w3z2 − 2w2z3)

where

K = 1
2(z2

1 + z2
2 + z2

3) and I = (w2
1 + w2

2 + w2
3 )1/2
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U =
1√

I + w1
+

1√
I − 1

2w1 +
√

3
2 w2

+
1√

I − 1
2w1 −

√
3

2 w2

Fixing I = 1 gives the shape sphere.
Collinear configurations correspond to w3 = 0.
Isosceles triangles with q1 at the apex correspond to w2 = 0.
Equilateral triangles are (0, 0,±1).
Lagrange relative equilibrium: (a 6= 0)

w = (0, 0, a, (c/a)t) z = (0,−c/(2a), 0, c)

where c2 = 3
√

a.
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Instability of Lagrange Equilateral Triangle Solution

Set ω = c/α. Then w4(t) = ωt and the period of the orbit is 2π/ω.
ξ̇ = JD2H(∆)ξ is no longer time dependent.
Compute

JD2H(∆) =



0 0 0 4α 0 0
−2ω 0 −2ω 0 4α 0

0 −2ω 0 0 0 4α

−5ω2

8α 0 −ω2

α 0 2ω 0
0 −5ω2

8α 0 0 0 2ω

−ω2

α 0 −5ω2

4α 0 2ω 0


Symmetry: Let S = diag {1,−1, 1,−1, 1,−1}. S fixes the Lagrange
solution, leaves H unchanged and SJ = −JS. It follows that:

JD2H(∆) = −SJD2H(∆)S

Char. multipliers come from exp(JD2H(∆)2π/ω):
1, 1, e

√
2 π, e

√
2 π, e−

√
2 π, e−

√
2 π
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Stability Reductions for the Figure-Eight

Let X (t) be the fundamental matrix solution for the linearized
equations about the figure-eight.

1 Permutation symmetry (choreography or 240◦ rotation on shape
sphere) to reduce monodromy matrix to (PTX (T

3 ))3

2 120◦ rotation and reflection about equator to reduce to (PT
1 X (T

6 ))6

3 Reflection about isosceles meridian M1 and time-reversal
symmetry gives

(PT
1 SX−1( T

12)SX ( T
12))6

Letting Q = PT
1 S and C = X ( T

12) gives the monodromy matrix in
factored form:

(QC−1SC)6
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Theorem
(GR 2007) The monodromy matrix for the figure-eight is (QC−1SC)6

where C = X (T/12),

Q =

[
R 0
0 −R

]
, R =


−1

2 −
√

3
2 0

−
√

3
2

1
2 0

0 0 −1


and

S = diag {1,−1, 1,−1, 1,−1}.
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Recall: S = diag {1,−1, 1,−1, 1,−1}. Let D = C−1SC.

X (T ) = (QC−1SC)6 = (QD)6

Stability determined by eigenvalues of QD.

Eigenvalues of both Q and D are ±1,±1,±1.
Q and D are symplectic with multiplier −1.
Q is orthogonal and symmetric.
Both Q and D are involutions: Q2 = D2 = I.
D has special form

D =

[
a b1

−b2 −aT

]

where b1, b2 are symmetric.
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Choosing a Good Basis

Let ζ(t) represent the figure-eight on the reduced space. Since
ζ̇ = J∇H(ζ), it follows that ζ̈ = JD2H(ζ(t))ζ̇.
Therefore, ζ̇(T ) = ζ̇(0) is an evec. with eval. +1 for both the
monodromy matrix and QD.

Lemma
Let Y (t) be the fundamental matrix solution to the linearized equations
for the figure-eight with arbitrary initial conditions Y (0) = Y0. The
monodromy matrix is similar to

(Y−1
0 QY0 C−1SC)6

where C = Y (T/12).

Choose a very special Y0 to be orthogonal, symplectic and containing
the eigenvectors of Q. Moreover, take the fourth column of Y0 to be
ζ̇(0).
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With this choice of Y0, Y−1
0 QY0 = Λ =

[
I 0
0 −I

]
and the fourth

column of C is
ζ̇(T/12) = (0, ∗, 0, ∗, 0, ∗)T

The matrix determining stability is then ΛD with the special property
that

1
2(ΛD + DΛ) =

[
a 0
0 aT

]
very nice!

If (ΛD)v = λv , then (DΛ)v = 1
λv and

(ΛD + DΛ)v = (λ + 1
λ)v

For the figure-eight to be stable, the eigenvalues of a must be real and
between −1 and 1.
By construction, aT has the form 1 ∗ ∗

0 u2 · SJu5 u2 · SJu6
0 u3 · SJu5 u3 · SJu6


where ui is the i-th column of C = Y (T/12).
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Theorem
Let ui be the i-th column of C = Y (T/12), where Y (t) is the
fundamental matrix solution with special initial condition Y0. The
figure-eight is spectrally stable if and only if the eigenvalues λi of[

u2 · SJu5 u2 · SJu6
u3 · SJu5 u3 · SJu6

]
are real and satisfy −1 ≤ λi ≤ 1.

Numerical calculations via MATLAB show λ1 = 0.2098 . . . and
λ2 = −0.5076 . . . so the figure-eight is linearly stable. These values
agree with Simó’s up to 8 decimal places.

Question: Can we estimate these values without a computer?
Answer: Maybe. Using a Runge-Kutta-Fehlberg method with local
truncation error of order four, only four steps are required to rigorously
conclude stability (local truncation error 0.004).
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Comparison with Lagrange Solution

The Lagrange solution has the same time-reversal symmetry as the
eight. Can do a similar reduction with the same matrix S to obtain a
monodromy matrix of the form

(SC−1SC)∗

Same trick as with the figure-eight to reduce to

1
2(ΛD + DΛ) =

[
a 0
0 aT

]
Obtain aT(t) as a function of time cos(2ωt) 0 0

0 f (t) −g(t)
0 g(t) f (t)


where f (t) = cos(2ωt) cosh(

√
2ωt), g(t) = sin(2ωt) sinh(

√
2ωt).

Discriminant of 2× 2 block is −4 sin2(2ωt) sinh2(
√

2ωt) which implies
instability.
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Other Symmetric Orbits: Chen, Ouyang and Xia, (Broucke,Hénon)

Consider absolutely continuous paths γ such that

γ(t + T ) = ei θγ(t) ∀t , with θ ∈ (0, 2π).

Problem: Minimizers in this space are planar relative equilibria.

Solution: Impose a further constraint γ(t) = γ(−t) (time-reversal
reflection symmetry).

Configuration must be collinear at times t = 0 and t = T/2. If θ is a
rational multiple of 2π, then minimizers will be periodic solutions.

Chen, Ouyang and Xia (COX) prove that minimizers are attained and
collision-free in this special path space. Moreover, there is an open set
of n positive masses for which the minimizing solutions are NOT
collinear relative equilibria.
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Stability of the COX Orbits

The two symmetries on the shape sphere are almost trivial!

γ(t + T ) = γ(t) S = I

and
γ(−t + T ) = Sγ(t) S = diag {1, 1,−1,−1,−1, 1}

Theorem
Any periodic orbit in the 3-body problem satisfying the above two
symmetries is spectrally stable iff the eigenvalues of SA−1SA are on
the unit circle, where A = X (T

2 ).

As with the figure-eight orbit, a nice change of coordinates exists to
reduce the problem to a 2× 2 matrix.
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Conclusions and Questions

Computing Floquet multipliers by hand is hard, but symmetry and
good coordinates make it significantly easier.
The figure-eight orbit is amazing!
What is the connection (if any) between being an action-minimizer
over a portion of the orbit and the linear stability of the full orbit?
(two degrees of freedom model?)
Is time-reversal symmetry required for stability?
Can we prove the linear instability of choreographies with n bodies
on a figure-eight (n ≥ 5, n odd)?
Linear stability of the COX orbits?
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