Evaluation Codes from Algebraic Surfaces over a Finite Field

John B. Little/joint work with Hal Schenck

College of the Holy Cross/University of Illinois

AG17 – SIAM Conference on Applied Algebraic Geometry Georgia Tech

August 2, 2017

イロト イ理ト イヨト イヨト

Evaluation codes

- X an algebraic variety over F_q, S = {P₁,...,P_n} ⊆ X(F_q),

 L a vector space of functions on X with all f(P_i) defined.
- The image of the evaluation map

$$ev: \mathcal{L} \rightarrow \mathbb{F}_q^n$$

 $f \mapsto (f(P_1), \dots, f(P_n))$

is a linear code; $k \leq \dim \mathcal{L}$; *d* depends on *X*, *S*, *L*.

Well-known examples: *Reed-Solomon codes* from
 S = 𝔅^{*}_q ⊂ X = 𝔅¹; *AG Goppa codes* with X = other curves over 𝔅_q.

・ロト ・ 理 ト ・ ヨ ト ・

What about higher-dimensional varieties X?

- Some examples have been studied–e.g. *projective Reed-Muller codes* from $X = \mathbb{P}^n$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties, toric varieties, etc.
- But, is there potential for producing really good codes(?)
- We'll concentrate on X a projective surface (dim X = 2) and Reed-Muller-type codes with S = X(F_q), L = vector space of homogeneous forms of some fixed degree s.
- Notation: $C(X, s, \mathbb{F}_q)$

ヘロア 人間 アメヨア 人口 ア

Key issue with these codes; a motivating example

- Note: If $f \in \mathcal{L}$, $X \cap \mathbf{V}(f)$ is a curve
- Recurrent pattern: (Hasse-Weil-type bounds ⇒) lowest-weight codewords tend to come from *f* ∈ *L* for which *X* ∩ V(*f*) *reducible*, especially reducible with genus 0 components, at least if *q* >> 0;
- For instance, consider the C(X, 1, 𝔽_q) codes from quadric surfaces in 𝒫³:
 - X a hyperbolic $\Rightarrow |X(\mathbb{F}_q)| = q^2 + 2q + 1$, and $|(X \cap \mathbf{V}(f))(\mathbb{F}_q)| = 2q + 1$ if the plane $\mathbf{V}(f)$ is tangent to X.
 - 2 *X* elliptic $\Rightarrow |X(\mathbb{F}_q)| = q^2 + 1$, $|(X \cap \mathbf{V}(f))(\mathbb{F}_q)| = q + 1$ all *f*.

イロト 不得 とくほ とくほ とうほ

• Parameters $[q^2 + 2q + 1, 4, q^2]$ (hyperbolic) and $[q^2 + 1, 4, q^2 - q]$ (elliptic; equals best known for q = 8, 9).

Our starting point: Ansatz from thesis of M. Zarzar

Definition (Néron-Severi group)

 $NS(X) = group \text{ of } \mathbb{F}_q$ -rational divisor classes modulo algebraic equivalence, a finitely-generated abelian group, rank is denoted $\rho(X)$, called the Picard number of X.

(**Key idea**) – look for surfaces X with $\rho(X) = 1$ (or small).

Theorem (Zarzar-Voloch)

If NS(X) is generated by [H], H ample, and [D] = m[H], then for any nonzero $f \in L(D)$, the divisor of zeroes of f has at most m irreducible components.

<ロト <回 > < 注 > < 注 > 、

Some bounds – sectional genus of X also matters!

Theorem (Corollary of Zarzar-Voloch and Hasse-Weil-Serre)

Assume $\rho(X) = 1$, $NS(X) = \langle [H] \rangle$. Writing $d_1 = d(C(X, 1, \mathbb{F}_q))$ and g = sectional genus, the max. no. of zeroes in a non-zero codeword is

$$n-d_1 \leq 1+q+g\lfloor 2\sqrt{q} \rfloor.$$

Corollary

In situation of theorem, if q is sufficiently large, then writing $d_s = d(C(X, s, \mathbb{F}_q))$,

$$n-d_s \leq s(n-d_1).$$

ヘロト ヘアト ヘビト ヘビト

æ

Sectional genus g = 0

Theorem

If S is a smooth surface and L is an ample line bundle with g(L) = 0, then (S, L) is one of the following:

•
$$(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(r)), r = 1, 2.$$

- $Q \subset \mathbb{P}^3$ a smooth quadric, $(Q, \mathcal{O}_Q(1))$
- a Hirzebruch surface $(F_r, \mathcal{O}_{F_r}(E + sf)), s \ge r + 1$.

In other words, few examples, and those are pretty well understood from coding theory perspective – e.g. codes from quadrics, rational scrolls, toric surface codes.

ヘロア 人間 アメヨア 人口 ア

Higher sectional genus not immediately promising

• Consider the surface X_m in \mathbb{P}^3 given by

$$0 = w^m + xy^{m-1} + yz^{m-1} + zx^{m-1}$$

(Shioda: $\rho(X_m) = 1$ over \mathbb{C} if $m \ge 5$.)

- For *m* = 4 and some *q*, reduction of *X*₄ has no 𝔽_{*q*}-lines or conics ⇒ no reducible plane sections over 𝔽_{*q*}.
- With q = 11 and s = 1, $C(X_4, 1, \mathbb{F}_{11})$ is [144, 4, 120].
- Min. weight codewords ↔ smooth plane quartics (g = 3) with 24 F₁₁-rational points (optimal by manypoints.org).
- But there are codes from cubic surfaces (g = 1) over F₁₁ with parameters [144, 4, 126]

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Sectional genus g = 1?

- Surfaces with sectional genus 1 essentially come in "two flavors"
- Ruled surfaces ("scrolls") over elliptic curves but these don't ever seem to give good codes: ρ(X) ≥ 2 and reducible hyperplane sections containing multiple fibers of the ruling are hard to avoid
- Del Pezzo surfaces (and surfaces that "become Del Pezzo" over an algebraic extension of 𝔽_q)
- Cubic surfaces in P³ are the simplest examples examples considered already by Zarzar and Voloch. (If time, some experimental results on those at end.)

イロト イポト イヨト イヨト

Our best g = 1 examples

- Consider the linear system of cubics in P² through a general Frobenius orbit O₃ = {P, F(P), F²(P)} (P ∈ P²(𝔽_{q³}))
- dim = 7, so defines a rational map P² into P⁶; image is a degree 6 surface X over F_q, "becomes Del Pezzo" over F_{q³}
- Blows up the points in \mathcal{O}_3 to lines defined over \mathbb{F}_{q^3} , not \mathbb{F}_q .
- Claim: ρ(X) = 2; NS(X) is generated by classes of proper transforms of conics in P² through O₃, and lines in P².

イロト 不得 とくほ とくほとう

Zeta function and Picard number

• The zeta function of this X has the form

$$Z(X,t) = \frac{[\deg 0][\deg 0]}{[\deg 1][\deg 4][\deg 1]} = \frac{1}{(1-t)P_2(t)(1-q^2t)},$$

where $P_2(t) = (1 - qt) \prod_{j=1}^3 (1 - \alpha_j t)$, with $|\alpha_j| = q$ all *j*. • Usual zeta function "yoga":

$$|X(\mathbb{F}_{q^r})| = 1 + q^{2r} + q^r + \sum_{j=1}^{3} \alpha_j^r = \begin{cases} 1 + q^{2r} + q^r & r \equiv 1, 2 \mod 3\\ 1 + q^{2r} + 4q^r & r \equiv 0 \mod 3 \end{cases}$$

• $\Rightarrow \alpha_j = q, e^{2\pi i/3}q, e^{4\pi i/3}q$. A result of Tate: $\rho(X) \le 1 +$ the number of α_j equal to q, hence equal to 2

(More) interesting codes!

Theorem (also see Couvreur (1))

For
$$q \geq 5$$
, $C(X, 1, \mathbb{F}_q)$ is a $[q^2 + q + 1, 7, q^2 - q - 1]$ code over \mathbb{F}_q .

For q = 7, 8, 9 this equals the best known *d* for these *n*, *k* according to Grassl's tables.

Theorem (L-Schenck)

For
$$q \ge 5$$
, $C(X, 2, \mathbb{F}_q)$ is a $[q^2 + q + 1, 19, \le q^2 - 3q - 1]$ code over \mathbb{F}_q , with equality for all $q >> 0$.

ヘロア 人間 アメヨア 人口 ア

æ

Experimental results

- $d(C(X, 2, \mathbb{F}_7)) = 7^2 3 \cdot 7 1 = 27$, and a "new best" for q = 7 (Magma),
- (Magma) d also equals q² 3q 1 for q = 9 (this improves best known d by 2 in Grassl's tables)
- But d = 37 < 8² 3 · 8 1 for q = 8 minimum weight words come from irreducible curves of degree 6 with nodes at the points of the Frobenius orbit, some have 36
 F₈-rational points (new best there for curves of genus 7(!))

イロト 不得 とくほ とくほ とう

A few details

- The minimum-weight words for the C(X, 1, F_q) code come from hyperplane sections ↔ reducible cubics of the form C ∪ L where C is a conic containing O₃ and C ∩ L is defined over F_{q²} ⇒ 2q + 2 points over F_q
- dim $C(X, 2, \mathbb{F}_q) = 19 = \binom{6+2}{2} 9$ because the ideal of X is generated by 9 quadrics in \mathbb{P}^6
- For q >> 0, the minimum-weight words for C(X, 2, F_q) ↔ reducible sextics (C₁ ∪ L₁) ∪ (C₂ ∪ L₂) with C_i ∪ L_i as above and L_i ∩ C_j defined over F_{q²}; can see exactly (2q + 2) + (2q + 2) 2 = 4q + 2 points over F_q.
- Thanks for your attention!

イロト 不得 とくほ とくほ とう

Cubic surfaces with $\rho = 1$ – experimental results

Over the alg. closure, a smooth cubic surface contains exactly 27 lines with symmetry group $W(E_6)$. Frob acts as a permutation of the lines; the conjugacy class of Frob in $W(E_6)$ determines the \mathbb{F}_q -structure – Swinnerton-Dyer/Manin:

Class	$ X(\mathbb{F}_q) $	$C(X, 1, \mathbb{F}_7)$	best d
C_{10}	$q^2 - q + 1$	[43, 4, 30/31]	35
C_{11}	$q^2 - 2q + 1$	[36, 4, 23/24]	29
C_{12}	$q^2 + 2q + 1$	[64, 4, 51]	52
C_{13}	$q^{2} + 1$	[50, 4, 37]	42
C_{14}	$q^{2} + q + 1$	[57, 4, 44]	47

 $C(X, 2, \mathbb{F}_7)$ from C_{12} cubics: [64, 10, 38] (best known d = 41).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

What to make of all this?

- ρ(X) = 1 ⇒ all 𝔽_q-rational plane sections are irreducible;
 these surfaces contain no 𝔽_q-rational lines or conics
- Note often (but not always!) n d = 13. Why 13? Hasse-Weil-Serre bound: The maximum number of \mathbb{F}_7 -points on a smooth plane cubic is $1 + 7 + \lfloor 2\sqrt{7} \rfloor = 13$, and attained. Singular (but irreducible) plane sections all have either q = 7 ("split" node), q + 1 = 8 (cusp), or q + 2 = 9 ("non-split" node) \mathbb{F}_7 -points.

Conjecture

For all $q \ge 5$, C_{12} cubics always have **optimal** cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_q -points for a smooth plane cubic curve.

References

- (1) A. Couvreur, Construction of rational surfaces yielding good codes, *Finite Fields Appl.* **17** (2011), 424-441.
- (2) H.P.F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field, Proc. Cambridge Phil. Soc. 63 (1967), 55-71.
- (3) J. Voloch and M. Zarzar, Algebraic geometric codes on surfaces, in "Arithmetic, geometry, and coding theory", *Sémin. Congr. Soc. Math. France*, **21** (2010), 211-216.
- (4) M. Zarzar, Error-correcting codes on low rank surfaces, *Finite Fields Appl.* **13** (2007), 727-737.

ヘロト ヘ戸ト ヘヨト ヘヨト