Evaluation Codes from Algebraic Surfaces over a Finite Field

John B. Little/joint work with Hal Schenck
College of the Holy Cross/University of Illinois
AG17 - SIAM Conference on Applied Algebraic Geometry Georgia Tech

August 2, 2017

Evaluation codes

- X an algebraic variety over $\mathbb{F}_{q}, \mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$, \mathcal{L} a vector space of functions on X with all $f\left(P_{i}\right)$ defined.
- The image of the evaluation map

$$
\begin{aligned}
e v: \mathcal{L} & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

is a linear code; $k \leq \operatorname{dim} \mathcal{L} ; d$ depends on $X, \mathcal{S}, \mathcal{L}$.

- Well-known examples: Reed-Solomon codes from $\mathcal{S}=\mathbb{F}_{q}^{*} \subset X=\mathbb{P}^{1} ; A G$ Goppa codes with $X=$ other curves over \mathbb{F}_{q}.

What about higher-dimensional varieties X ?

- Some examples have been studied-e.g. projective Reed-Muller codes from $X=\mathbb{P}^{n}$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties, toric varieties, etc.
- But, is there potential for producing really good codes(?)
- We'll concentrate on X a projective surface $(\operatorname{dim} X=2)$ and Reed-Muller-type codes with $\mathcal{S}=X\left(\mathbb{F}_{q}\right), \mathcal{L}=$ vector space of homogeneous forms of some fixed degree s.
- Notation: $C\left(X, s, \mathbb{F}_{q}\right)$

Key issue with these codes; a motivating example

- Note: If $f \in \mathcal{L}, X \cap \mathbf{V}(f)$ is a curve
- Recurrent pattern: (Hasse-Weil-type bounds \Rightarrow) lowest-weight codewords tend to come from $f \in \mathcal{L}$ for which $X \cap \mathbf{V}(f)$ reducible, especially reducible with genus 0 components, at least if $q \gg 0$;
- For instance, consider the $C\left(X, 1, \mathbb{F}_{q}\right)$ codes from quadric surfaces in \mathbb{P}^{3} :
(1) X a hyperbolic $\Rightarrow\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+2 q+1$, and $\left|(X \cap \mathbf{V}(f))\left(\mathbb{F}_{q}\right)\right|=2 q+1$ if the plane $\mathbf{V}(f)$ is tangent to X.
(2) X elliptic $\Rightarrow\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+1,\left|(X \cap \mathbf{V}(f))\left(\mathbb{F}_{q}\right)\right|=q+1$ all f.
- Parameters $\left[q^{2}+2 q+1,4, q^{2}\right]$ (hyperbolic) and $\left[q^{2}+1,4, q^{2}-q\right]$ (elliptic; equals best known for $q=8,9$).

Our starting point: Ansatz from thesis of M. Zarzar

Definition (Néron-Severi group)

$N S(X)=$ group of \mathbb{F}_{q}-rational divisor classes modulo algebraic equivalence, a finitely-generated abelian group, rank is denoted $\rho(X)$, called the Picard number of X.
(Key idea) - look for surfaces X with $\rho(X)=1$ (or small).

Theorem (Zarzar-Voloch)

If $N S(X)$ is generated by $[H], H$ ample, and $[D]=m[H]$, then for any nonzero $f \in L(D)$, the divisor of zeroes of f has at most m irreducible components.

Some bounds - sectional genus of X also matters!

Theorem (Corollary of Zarzar-Voloch and Hasse-Weil-Serre)

Assume $\rho(X)=1, N S(X)=\langle[H]\rangle$. Writing $d_{1}=d\left(C\left(X, 1, \mathbb{F}_{q}\right)\right)$ and $g=$ sectional genus, the max. no. of zeroes in a non-zero codeword is

$$
n-d_{1} \leq 1+q+g\lfloor 2 \sqrt{q}\rfloor .
$$

Corollary

In situation of theorem, if q is sufficiently large, then writing $d_{s}=d\left(C\left(X, s, \mathbb{F}_{q}\right)\right)$,

$$
n-d_{s} \leq s\left(n-d_{1}\right) .
$$

Sectional genus $g=0$

Theorem

If S is a smooth surface and L is an ample line bundle with $g(L)=0$, then (S, L) is one of the following:

- $\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(r)\right), r=1,2$.
- $Q \subset \mathbb{P}^{3}$ a smooth quadric, $\left(Q, \mathcal{O}_{Q}(1)\right)$
- a Hirzebruch surface $\left(F_{r}, \mathcal{O}_{F_{r}}(E+s f)\right), s \geq r+1$.

In other words, few examples, and those are pretty well understood from coding theory perspective - e.g. codes from quadrics, rational scrolls, toric surface codes.

Higher sectional genus not immediately promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1}
$$

(Shioda: $\rho\left(X_{m}\right)=1$ over \mathbb{C} if $m \geq 5$.)

- For $m=4$ and some q, reduction of X_{4} has no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections over \mathbb{F}_{q}.
- With $q=11$ and $s=1, C\left(X_{4}, 1, \mathbb{F}_{11}\right)$ is [144, 4, 120].
- Min. weight codewords \leftrightarrow smooth plane quartics $(g=3)$ with $24 \mathbb{F}_{11}$-rational points (optimal by manypoints.org).
- But there are codes from cubic surfaces $(g=1)$ over \mathbb{F}_{11} with parameters [144, 4, 126]

Sectional genus $g=1$?

- Surfaces with sectional genus 1 essentially come in "two flavors"
- Ruled surfaces ("scrolls") over elliptic curves - but these don't ever seem to give good codes: $\rho(X) \geq 2$ and reducible hyperplane sections containing multiple fibers of the ruling are hard to avoid
- Del Pezzo surfaces (and surfaces that "become Del Pezzo" over an algebraic extension of \mathbb{F}_{q})
- Cubic surfaces in \mathbb{P}^{3} are the simplest examples examples considered already by Zarzar and Voloch. (If time, some experimental results on those at end.)

Our best $g=1$ examples

- Consider the linear system of cubics in \mathbb{P}^{2} through a general Frobenius orbit $\mathcal{O}_{3}=\left\{P, F(P), F^{2}(P)\right\}$ $\left(P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{3}}\right)\right)$
- $\operatorname{dim}=7$, so defines a rational map \mathbb{P}^{2} into \mathbb{P}^{6}; image is a degree 6 surface X over \mathbb{F}_{q}, "becomes Del Pezzo" over $\mathbb{F}_{q^{3}}$
- Blows up the points in \mathcal{O}_{3} to lines defined over $\mathbb{F}_{q^{3}}$, not \mathbb{F}_{q}.
- Claim: $\rho(X)=2 ; \mathrm{NS}(X)$ is generated by classes of proper transforms of conics in \mathbb{P}^{2} through \mathcal{O}_{3}, and lines in \mathbb{P}^{2}.

Zeta function and Picard number

- The zeta function of this X has the form

$$
Z(X, t)=\frac{[\operatorname{deg} 0][\operatorname{deg} 0]}{[\operatorname{deg} 1][\operatorname{deg} 4][\operatorname{deg} 1]}=\frac{1}{(1-t) P_{2}(t)\left(1-q^{2} t\right)}
$$

where $P_{2}(t)=(1-q t) \prod_{j=1}^{3}\left(1-\alpha_{j} t\right)$, with $\left|\alpha_{j}\right|=q$ all j.

- Usual zeta function "yoga":

$$
\left|X\left(\mathbb{F}_{q^{r}}\right)\right|=1+q^{2 r}+q^{r}+\sum_{j=1}^{3} \alpha_{j}^{r}= \begin{cases}1+q^{2 r}+q^{r} & r \equiv 1,2 \bmod 3 \\ 1+q^{2 r}+4 q^{r} & r \equiv 0 \bmod 3\end{cases}
$$

- $\Rightarrow \alpha_{j}=q, e^{2 \pi i / 3} q, e^{4 \pi i / 3} q$. A result of Tate: $\rho(X) \leq 1+$ the number of α_{j} equal to q, hence equal to 2

(More) interesting codes!

Theorem (also see Couvreur (1))

For $q \geq 5, C\left(X, 1, \mathbb{F}_{q}\right)$ is a $\left[q^{2}+q+1,7, q^{2}-q-1\right]$ code over \mathbb{F}_{q}.

For $q=7,8,9$ this equals the best known d for these n, k according to Grassl's tables.

Theorem (L-Schenck)

For $q \geq 5, C\left(X, 2, \mathbb{F}_{q}\right)$ is a $\left[q^{2}+q+1,19, \leq q^{2}-3 q-1\right]$ code over \mathbb{F}_{q}, with equality for all $q \gg 0$.

Experimental results

- $d\left(C\left(X, 2, \mathbb{F}_{7}\right)\right)=7^{2}-3 \cdot 7-1=27$, and a "new best" for $q=7$ (Magma),
- (Magma) d also equals $q^{2}-3 q-1$ for $q=9$ (this improves best known d by 2 in Grassl's tables)
- But $d=37<8^{2}-3 \cdot 8-1$ for $q=8$ - minimum weight words come from irreducible curves of degree 6 with nodes at the points of the Frobenius orbit, some have 36 \mathbb{F}_{8}-rational points (new best there for curves of genus $7(!)$)

A few details

- The minimum-weight words for the $C\left(X, 1, \mathbb{F}_{q}\right)$ code come from hyperplane sections \leftrightarrow reducible cubics of the form $C \cup L$ where C is a conic containing \mathcal{O}_{3} and $C \cap L$ is defined over $\mathbb{F}_{q^{2}} \Rightarrow 2 q+2$ points over \mathbb{F}_{q}
- $\operatorname{dim} C\left(X, 2, \mathbb{F}_{q}\right)=19=\binom{6+2}{2}-9$ because the ideal of X is generated by 9 quadrics in \mathbb{P}^{6}
- For $q \gg 0$, the minimum-weight words for $C\left(X, 2, \mathbb{F}_{q}\right) \leftrightarrow$ reducible sextics $\left(C_{1} \cup L_{1}\right) \cup\left(C_{2} \cup L_{2}\right)$ with $C_{i} \cup L_{i}$ as above and $L_{i} \cap C_{j}$ defined over $\mathbb{F}_{q^{2}}$; can see exactly $(2 q+2)+(2 q+2)-2=4 q+2$ points over \mathbb{F}_{q}.
- Thanks for your attention!

Cubic surfaces with $\rho=1$ - experimental results

Over the alg. closure, a smooth cubic surface contains exactly 27 lines with symmetry group $W\left(E_{6}\right)$. Frob acts as a permutation of the lines; the conjugacy class of Frob in $W\left(E_{6}\right)$ determines the \mathbb{F}_{q}-structure - Swinnerton-Dyer/Manin:

Class	$\left\|X\left(\mathbb{F}_{q}\right)\right\|$	$C\left(X, 1, \mathbb{F}_{7}\right)$	best d
C_{10}	$q^{2}-q+1$	$[43,4,30 / 31]$	35
C_{11}	$q^{2}-2 q+1$	$[36,4,23 / 24]$	29
C_{12}	$q^{2}+2 q+1$	$[64,4,51]$	52
C_{13}	$q^{2}+1$	$[50,4,37]$	42
C_{14}	$q^{2}+q+1$	$[57,4,44]$	47

$C\left(X, 2, \mathbb{F}_{7}\right)$ from C_{12} cubics: $[64,10,38]$ (best known $d=41$).

What to make of all this?

- $\rho(X)=1 \Rightarrow$ all \mathbb{F}_{q}-rational plane sections are irreducible; these surfaces contain no \mathbb{F}_{q}-rational lines or conics
- Note often (but not always!) $n-d=13$. Why 13? Hasse-Weil-Serre bound: The maximum number of \mathbb{F}_{7}-points on a smooth plane cubic is $1+7+\lfloor 2 \sqrt{7}\rfloor=13$, and attained. Singular (but irreducible) plane sections all have either $q=7$ ("split" node), $q+1=8$ (cusp), or $q+2=9$ ("non-split" node) \mathbb{F}_{7}-points.

Conjecture

For all $q \geq 5, C_{12}$ cubics always have optimal cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_{q}-points for a smooth plane cubic curve.

References

(1) A. Couvreur, Construction of rational surfaces yielding good codes, Finite Fields Appl. 17 (2011), 424-441.
(2) H.P.F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field, Proc. Cambridge Phil. Soc. 63 (1967), 55-71.
(3) J. Voloch and M. Zarzar, Algebraic geometric codes on surfaces, in "Arithmetic, geometry, and coding theory", Sémin. Congr. Soc. Math. France, 21 (2010), 211-216.
(4) M. Zarzar, Error-correcting codes on low rank surfaces, Finite Fields Appl. 13 (2007), 727-737.

