Cubic Surfaces and Codes

John B. Little

Department of Mathematics and Computer Science Faculty Seminar

November 12, 2014

Outline

(1) Coding theory basics
(2) Evaluation codes from algebraic varieties
(3) Interlude - counting rational points on varieties

4 Cubic surfaces and codes

A disclaimer

As you will see, this is very much work in progress and I don't quite have the "punchline" yet. Thanks for the opportunity to speak on this though. The process of preparing this talk has been a good way to take stock of where I am in this project!

"A Mathematical Theory of Communication," Claude Shannon (1948)

Examples

This is a very general framework, incorporating examples such as

- communication with deep space exploration craft (Mariner, Voyager, etc. - the most important early application)
- storing/retrieving information in computer memory
- storing/retrieving audio information (CDs)
- storing/rerieving video information (DVD and Blu-Ray disks)
- wireless communication

A main goal of coding theory is the design of coding schemes that achieve error control: ability to detect and correct errors in received messages.

The case we will look at

- We'll consider "linear block codes" - vector subspaces C of \mathbb{F}_{q}^{n} for some n.
- Parameters $[n, k, d]$: the blocklength n, the dimension $k=\operatorname{dim}_{\mathbb{F}_{q}}(C)$, and the Hamming minimum weight/distance

$$
d=\min _{x \neq 0 \in C} \text { weight }(x)=\min _{x \neq y \in C} d(x, y)
$$

- $t=\left\lfloor\frac{d-1}{2}\right\rfloor \Rightarrow$ all errors of weight $\leq t$ can be corrected by "nearest neighbor decoding"
- Good codes: k / n not too small (so not extremely redundant), but at same time d or d / n not too small.

Evaluation code basics

Idea (in this form) goes back to work of Goppa from the late 1970's - early 1980's

- Let X be an algebraic variety defined over \mathbb{F}_{q}, with $\mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$.
- Let \mathcal{L} be some vector subspace of the field of rational functions on X with $f\left(P_{i}\right)$ defined for all $f \in L$ and P_{i}.
- Then consider the evaluation map

$$
\begin{aligned}
e v: \mathcal{L} & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

- Image is a linear code of blocklength n, dimension $k \leq \operatorname{dim} \mathcal{L}, d$ depends on properties of $X, \mathcal{S}, \mathcal{L}$

The "ur-examples"

- The well-known (and extensively used) Reed-Solomon codes $R S(k, q)$ are obtained with this construction by taking $X=\mathbb{P}^{1}, n=q-1$, and \mathcal{S} the set of nonzero affine \mathbb{F}_{q}-rational points of \mathbb{P}_{1}.
$\mathcal{L}=\operatorname{Span}\left\{1, x, \ldots, x^{k-1}\right\}=L\left((k-1) P_{\infty}\right)(k<q)$.
- This evaluation code has
$d=(q-1)-(k-1)=n-k+1$, since some polynomials of degree $\leq k-1$ have $k-1$ roots in \mathbb{F}_{q}, but no more
- A general bound says this is the biggest possible d for a given $n, k(!)$
- Goppa codes replace \mathbb{P}^{1} with other algebraic curves over \mathbb{F}_{q}. Known: can get some very good codes with this construction for $q>49$, q a square.

What about higher-dimensional varieties X ?

- Codes from some special varieties (quadrics, Hermitian varieties, Grassmannians, flag varieties, toric varieties, types of algebraic surfaces ...) have been investigated, but this subject is still really in its infancy
- One recurrent pattern: If $X \subset \mathbb{P}^{n}$ for some $n>\operatorname{dim} X$, and \mathcal{L} has the form $\left\{f / g \mid f \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{n}\right]_{s}\right\}$ for some degree s, then d can be (much) smaller than we hope because some $X \cap \mathbf{V}(f)$ can be reducible and contain lots of \mathbb{F}_{q}-rational points $\Rightarrow e v(f)$ are codewords of low weight.

Example $-s=1$ codes from quadric surfaces

- Say q is odd to rule out characteristic 2 "weirdness"
- Smooth quadrics in \mathbb{P}^{3} come in two "flavors"
- hyperbolic: ruled surfaces like hyperbolic paraboloids (e.g. $\mathbf{V}(x y-z w))$. Have $X \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ in Segre embedding so $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+2 q+1$.
- elliptic: non-ruled - analogous to real ellipsoids. Have $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+1$ in this case.

Example, continued

- Fix a linear form g so $Y=\mathbf{V}(g) \cap X$ a smooth conic $(q+1$ \mathbb{F}_{q}-points), take $\mathcal{S}=X\left(\mathbb{F}_{q}\right)-Y\left(\mathbb{F}_{q}\right)$, so $n=q^{2}+q$ in hyperbolic case and $n=q^{2}-q$ in elliptic case.
- Take $\mathcal{L}=\mathbb{F}_{q}[x, y, z, w]_{1} / g$.
- In the elliptic case, every plane $\mathbf{V}(f)$ for $f \in \mathbb{F}_{q}[x, y, z, w]_{1}$ meets X in either a single point or in a smooth conic $(q+1$ \mathbb{F}_{q}-points). Therefore, $d=q^{2}-q-1$.
- In the hyperbolic case, the tangent planes to X at \mathbb{F}_{q}-points intersect X in reducible conics consisting of two lines, so $2 q+1 \mathbb{F}_{q}$-points and $d=q^{2}-q-1$ again.
- But codes from elliptic quadrics are much better - the same d for a smaller n.

Zarzar's ansatz

In his 2007 U. Texas PhD thesis, Marcos Zarzar discussed the following idea.

- Take $\operatorname{dim} X=2$. Zeroes in codewords of an evaluation code come from \mathbb{F}_{q}-points in $\mathbf{V}(f) \cap X$ for $f / g \in \mathcal{L}$. But as above for quadrics, if $\mathbf{V}(f) \cap X$ is reducible (and $q \gg 0$) it can contain many more \mathbb{F}_{q}-rational points than corresponding smooth $\mathbf{V}(f) \cap X$ (can quantify this).
- So good codes should come from surfaces X containing few (or no) reducible curves of small degree relative to the degree of the f from \mathcal{L}.

The Neron-Severi group

Precise statement uses an important invariant of algebraic varieties-the Neron-Severi group of divisors classes modulo algebraic equivalence.

This refers to divisors rational over the field of definition of X.

- For elliptic quadrics, $N S(X)=\mathbb{Z} \cdot[H], H=$ any smooth conic plane section
- For hyperbolic quadrics, $N S(X)=\mathbb{Z} \cdot\left[L_{1}\right] \oplus \mathbb{Z} \cdot\left[L_{2}\right]$, where L_{i} are lines in the two rulings

Fact noted by Zarzar: If $\operatorname{deg} X=d$ with $\left(d, \operatorname{char}\left(\mathbb{F}_{q}\right)\right)=1$, $\operatorname{rank}(N S(X))=1$, and Y irreducible over \mathbb{F}_{q} with deg $Y<d$, then $X \cap Y$ is irreducible.

Counting \mathbb{F}_{q}-points on varieties - the zeta function

- For any given X and q, it is, of course, a finite problem to determine all \mathbb{F}_{q}-points on X by "brute force."
- But there is also an extremely elegant and beatiful theory based on the generating function known as the zeta function of X.
- Let X be defined over \mathbb{F}_{q} and let $N_{r}=\left|X\left(\mathbb{F}_{q^{r}}\right)\right|$.
- Then

$$
Z(X, t)=\exp \left(\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}\right)
$$

The Weil Conjectures (Dwork, Deligne, ...)

- Say X can be viewed as reduction of a scheme over \mathbb{Z}
- $Z(X, t)$ is a rational function of t whose numerator and denominator factor into polynomials
- reflecting shape of cohomology of the complex variety $X(\mathbb{C})$, and
- and whose roots have special algebraic properties.
- Best way to explain this is by giving the examples most relevant to our story ...

The zeta function of a smooth plane cubic curve

- $Z(X, t)=\frac{[\operatorname{deg} 2]}{[\operatorname{deg} 1][\operatorname{deg} 1]}=\frac{\left(1-\alpha_{1} t\right)\left(1-\alpha_{2} t\right)}{(1-t)(1-q t)}$, where $\left|\alpha_{i}\right|=\sqrt{q}$ and $\alpha_{1} \alpha_{2}=q$
- Taking log of both sides of the equation

$$
\exp \left(\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}\right)=\frac{\left(1-\alpha_{1} t\right)\left(1-\alpha_{2} t\right)}{(1-t)(1-q t)}
$$

and equating coefficients gives for all $r \geq 1$:

$$
N_{r}=1+q^{r}-\left(\alpha_{1}^{r}+\alpha_{2}^{r}\right)
$$

- With $r=1$ (and a bit more work), Hasse-Weil-Serre:

$$
1+q-\lfloor 2 \sqrt{q}\rfloor \leq N_{1} \leq 1+q+\lfloor 2 \sqrt{q}\rfloor
$$

The zeta function of a smooth cubic surface

- $Z(X, t)=\frac{[\text { deg 0] [deg 0] }}{[\operatorname{deg} 1][\operatorname{deg} 7][\operatorname{deg} 1]}=\frac{1}{(1-t) P_{2}(t)\left(1-q^{2} t\right)}$, where $P_{2}(t)=(1-q t) \prod_{j=1}^{6}\left(1-\alpha_{j} t\right)$, with $\left|\alpha_{j}\right|=q$ all j.
- Taking log of both sides of the equation and equating coefficients gives for all $r \geq 1$:

$$
N_{r}=1+q^{2 r}+q^{r}+\sum_{j=1}^{6} \alpha_{j}^{r}
$$

- Tate conjecture (known to hold in this case, I think): the rank of $N S(X)$ equals $1+$ the number of α_{j} equal to q.

A test case - cubic surface codes

- Construct codes from X a smooth cubic surface in \mathbb{P}^{3}.
- A first observation: there are many more differences between cubics than between quadrics - different numbers of \mathbb{F}_{q}-points, different ranks of $N S(X)$, etc.
- Fortunately, this is a well-studied area, starting with work of Cayley and Salmon from the 1850's (over \mathbb{C}).
- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 straight lines, always in a particular highly symmetric and intricate configuration.
- Symmetry group of the 27 lines is a group of order 51840 $\left(=W\left(E_{6}\right)\right)$
- For some X, some lines may only be defined over an algebraic extension of \mathbb{F}_{q}

The Clebsch cubic

Figure: A cubic surface with 27 real lines

The Frobenius action on the 27 lines

- Because we assume X is defined over \mathbb{F}_{q} (where all $a \in \mathbb{F}_{q}$ satisfy $a^{q}=a$), the Frobenius mapping $F:(x, y, z, w) \rightarrow\left(x^{q}, y^{q}, z^{q}, w^{q}\right)$ takes X to itself
- $\Rightarrow F$ also acts as a permutation of the lines on the cubic over the algebraic closure $\overline{F_{q}}$
- There is a complete classification of the conjugacy classes in $W\left(E_{6}\right)$.
- Which class F (acting on the 27 lines) belongs to determines the structure of the cubic!
- 25 possibilities summarized in two tables from a 1967 paper of Swinnerton-Dyer (and in a related table in Manin's Cubic Forms).

An extract from the Swinnerton-Dyer table

Exactly five types of cubics with rank $N S(X)=1(\Rightarrow$ no \mathbb{F}_{q}-rational lines)

$$
\begin{array}{cccc}
\text { Class } & \text { PermType } & N_{1}=\left|X\left(\mathbb{F}_{q}\right)\right| & \operatorname{ord}\left(\eta_{j}\right) \\
\hline C_{10} & \left\{3,6^{3}, 6\right\} & q^{2}-q+1 & 2,2,3,3,6,6 \\
C_{11} & \left\{3^{9}\right\} & q^{2}-2 q+1 & 3,3,3,3,3,3 \\
C_{12} & \left\{3,6^{4}\right\} & q^{2}+2 q+1 & 3,3,6,6,6,6 \\
C_{13} & \left\{3,12^{3}\right\} & q^{2}+1 & 3,3,12,12,12,12 \\
C_{14} & \left\{9^{3}\right\} & q^{2}+q+1 & 9,9,9,9,9,9
\end{array}
$$

Notes: η_{j} is a primitive ord $\left(\eta_{j}\right)$ th root of unity with $\alpha_{j}=\eta_{j} \boldsymbol{q}$. Knowing the η_{j} allows us to compute N_{r} for all $r \geq 1$ as before.

Some experimental results for $s=1$ codes

Generated cubic surfaces randomly, classified them by looking at the numbers of $\mathbb{F}_{q^{r}}$-points for $r=1,2,3$, whether they contained lines defined over \mathbb{F}_{q}, etc. With $q=7$, for instance:

- C_{10} - found [43,4,30] and [43, 4, 31] examples (best possible $d=35$)
- C_{11} - found $[36,4,23]$ and $[36,4,24]$ examples (best possible $28 \leq d \leq 29$)
- C_{12} - all $[64,4,51]$ (several hundred of them) (best possible $52 \leq d \leq 53$)
- C_{13} (very rare) - found [50, 4, 37] (best possible $d=42$)
- C_{14} (rare) - found [57,4,44] (best possible $d=47$)

What to make of all this?

- C_{12} cubics are clearly the best for this construction.
- Also, confirmation of Zarzar's ansatz. Cubics with rank $N S(X)>1$ can have reducible plane sections with as many as $3 q+1=22$ points with $q=7$. The largest number of \mathbb{F}_{7}-points we were seeing in plane sections here for $q=7$ is, e.g., $64-51=13$.
- Why 13? Recall the Hasse-Weil-Serre bound: The maximum number of \mathbb{F}_{7}-points on a smooth plane cubic is $1+7+\lfloor 2 \sqrt{7}\rfloor=13$. Moreover, singular (but irreducible) plane sections all have either $q=7$ ("split" node), $q+1=8$ (cusp), or $q+2=9$ ("non-split" node) \mathbb{F}_{q}-points.
- Note: Some of the C_{10} and C_{11} surfaces don't have any plane sections with $13 \mathbb{F}_{7}$-points.

A conjecture

Based on lots of additional experimental evidence for prime powers $q \leq 37$,

Conjecture

For all $q \geq 5$ a C_{12} cubic always contains optimal cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_{q}-points for a smooth plane cubic curve.

C_{12} cubics - a closer look

For C_{12} surfaces, can extract the following additional information from Swinnerton-Dyer:

- All the lines on a C_{12} are defined over $\mathbb{F}_{q^{6}}$ (the degree 6 extension field of \mathbb{F}_{q}).
- The Frobenius orbits on the lines consist of:
- one coplanar 3-cycle (\Rightarrow those lines are defined over $\mathbb{F}_{q^{3}}$), and
- four 6-cycles, each consisting of two coplanar triangles, where F takes a line in one triangle to a line in the other triangle (\Rightarrow those triangles and the planes containing them are defined over $\mathbb{F}_{q^{2}}$)

Well, so what?

The information about the Frobenius orbits of the lines implies:

Theorem

The equation of a C_{12} cubic surface can be written (in four different ways) as

$$
\begin{equation*}
\ell \cdot F(\ell) \cdot F^{2}(\ell)=m \cdot n \cdot F(n) \tag{1}
\end{equation*}
$$

where $\ell=0$ is a plane defined over $\mathbb{F}_{q^{3}}, m=0$ is a plane defined over \mathbb{F}_{q}, and $n=0$ is a plane defined over $\mathbb{F}_{q^{2}}$.

The idea: $m=0$ defines the plane of the 3 -cycle orbit, which consists of $m=F^{i}(\ell)=0, i=0,1,2$. A 6 -cycle orbit consists of the other 6 "obvious lines" from (1).

More details

The "obvious lines" mentioned before are the

$$
\begin{array}{rlrl}
n=\ell=0, & F(n)=F(\ell)=0, & n=F^{2}(\ell)=0 \\
F(n) & =\ell=0, & n=F(\ell)=0, & \\
F(n)=F^{2}(\ell)=0
\end{array}
$$

coming from the form of the equation (1).
It is not the case that every cubic with an equation of the form (1) is a C_{12}, though. There are also C_{10} 's and C_{23} 's of this form.

Two final (vague) observations

- The form (1)

$$
\ell \cdot F(\ell) \cdot F^{2}(\ell)=m \cdot n \cdot F(n)
$$

is quite reminiscent of the Weierstrass form of an elliptic curve when you look at it the right way over \mathbb{F}_{q} :

$$
(\text { irreducible cubic in } x)=w y^{2}
$$

By taking plane sections of (1), might be possible to use known facts about Weierstrass equations(!)

- But there's got to be a pigeonhole principle component too because the ultimate idea (if the conjecture is true!) has to be: X has lots of \mathbb{F}_{q}-points \Rightarrow some plane section has lots of \mathbb{F}_{q}-points.

