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A disclaimer

As you will see, this is very much work in progress and I don’t
quite have the “punchline” yet. Thanks for the opportunity to
speak on this though. The process of preparing this talk has
been a good way to take stock of where I am in this project!
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“A Mathematical Theory of Communication,”
Claude Shannon (1948)

message noise

↓ ↓
encoder → trans. → channel → rec. → decoder

↓
message

John B. Little Cubic Surfaces and Codes



Coding theory basics
Evaluation codes from algebraic varieties

Interlude – counting rational points on varieties
Cubic surfaces and codes

Examples

This is a very general framework, incorporating examples such
as

communication with deep space exploration craft (Mariner,
Voyager, etc. – the most important early application)
storing/retrieving information in computer memory
storing/retrieving audio information (CDs)
storing/rerieving video information (DVD and Blu-Ray
disks)
wireless communication

A main goal of coding theory is the design of coding schemes
that achieve error control : ability to detect and correct errors in
received messages.
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The case we will look at

We’ll consider “linear block codes” – vector subspaces C of
Fn

q for some n.
Parameters [n, k ,d ]: the blocklength n, the dimension
k = dimFq (C), and the Hamming minimum weight/distance

d = min
x 6=0∈C

weight(x) = min
x 6=y∈C

d(x , y)

t = bd−1
2 c ⇒ all errors of weight ≤ t can be corrected by

“nearest neighbor decoding”
Good codes: k/n not too small (so not extremely
redundant), but at same time d or d/n not too small.
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Evaluation code basics

Idea (in this form) goes back to work of Goppa from the late
1970’s - early 1980’s

Let X be an algebraic variety defined over Fq, with
S = {P1, . . . ,Pn} ⊆ X (Fq).
Let L be some vector subspace of the field of rational
functions on X with f (Pi) defined for all f ∈ L and Pi .
Then consider the evaluation map

ev : L → F n
q

f 7→ (f (P1), . . . , f (Pn))

Image is a linear code of blocklength n, dimension
k ≤ dimL, d depends on properties of X , S, L
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The “ur-examples”

The well-known (and extensively used) Reed-Solomon
codes RS(k ,q) are obtained with this construction by
taking X = P1, n = q − 1, and S the set of nonzero affine
Fq-rational points of P1.
L = Span{1, x , . . . , xk−1} = L((k − 1)P∞) (k < q).
This evaluation code has
d = (q − 1)− (k − 1) = n− k + 1, since some polynomials
of degree ≤ k − 1 have k − 1 roots in Fq, but no more
A general bound says this is the biggest possible d for a
given n, k (!)
Goppa codes replace P1 with other algebraic curves over
Fq. Known: can get some very good codes with this
construction for q > 49, q a square.
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What about higher-dimensional varieties X?

Codes from some special varieties (quadrics, Hermitian
varieties, Grassmannians, flag varieties, toric varieties,
types of algebraic surfaces ... ) have been investigated, but
this subject is still really in its infancy
One recurrent pattern: If X ⊂ Pn for some n > dim X , and
L has the form {f/g | f ∈ Fq[x0, . . . , xn]s} for some degree
s, then d can be (much) smaller than we hope because
some X ∩ V(f ) can be reducible and contain lots of
Fq-rational points⇒ ev(f ) are codewords of low weight.
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Example – s = 1 codes from quadric surfaces

Say q is odd to rule out characteristic 2 “weirdness”
Smooth quadrics in P3 come in two “flavors”
hyperbolic: ruled surfaces like hyperbolic paraboloids (e.g.
V(xy − zw)). Have X ' P1 × P1 in Segre embedding so
|X (Fq)| = q2 + 2q + 1.
elliptic: non-ruled – analogous to real ellipsoids. Have
|X (Fq)| = q2 + 1 in this case.
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Example, continued

Fix a linear form g so Y = V(g) ∩ X a smooth conic (q + 1
Fq-points), take S = X (Fq)− Y (Fq), so n = q2 + q in
hyperbolic case and n = q2 − q in elliptic case.
Take L = Fq[x , y , z,w ]1/g.
In the elliptic case, every plane V(f ) for f ∈ Fq[x , y , z,w ]1
meets X in either a single point or in a smooth conic (q + 1
Fq-points). Therefore, d = q2 − q − 1.
In the hyperbolic case, the tangent planes to X at Fq-points
intersect X in reducible conics consisting of two lines, so
2q + 1 Fq-points and d = q2 − q − 1 again.
But codes from elliptic quadrics are much better – the
same d for a smaller n.
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Zarzar’s ansatz

In his 2007 U. Texas PhD thesis, Marcos Zarzar discussed the
following idea.

Take dim X = 2. Zeroes in codewords of an evaluation
code come from Fq-points in V(f ) ∩ X for f/g ∈ L. But as
above for quadrics, if V(f ) ∩ X is reducible (and q >> 0) it
can contain many more Fq-rational points than
corresponding smooth V(f ) ∩ X (can quantify this).
So good codes should come from surfaces X containing
few (or no) reducible curves of small degree relative to the
degree of the f from L.
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The Neron-Severi group

Precise statement uses an important invariant of algebraic
varieties–the Neron-Severi group of divisors classes modulo
algebraic equivalence.
�

This refers to divisors rational over the field of definition of X .

For elliptic quadrics, NS(X ) = Z · [H], H = any smooth
conic plane section
For hyperbolic quadrics, NS(X ) = Z · [L1]⊕ Z · [L2], where
Li are lines in the two rulings

Fact noted by Zarzar: If deg X = d with (d , char(Fq)) = 1,
rank(NS(X )) = 1, and Y irreducible over Fq with deg Y < d ,
then X ∩ Y is irreducible.
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Counting Fq-points on varieties – the zeta function

For any given X and q, it is, of course, a finite problem to
determine all Fq-points on X by “brute force.”
But there is also an extremely elegant and beatiful theory
based on the generating function known as the zeta
function of X .
Let X be defined over Fq and let Nr = |X (Fqr )|.
Then

Z (X , t) = exp

( ∞∑
r=1

Nr
t r

r

)
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The Weil Conjectures (Dwork, Deligne, ... )

Say X can be viewed as reduction of a scheme over Z
Z (X , t) is a rational function of t whose numerator and
denominator factor into polynomials

reflecting shape of cohomology of the complex variety
X (C), and
and whose roots have special algebraic properties.

Best way to explain this is by giving the examples most
relevant to our story ...
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The zeta function of a smooth plane cubic curve

Z (X , t) = [deg 2]
[deg 1][deg 1] = (1−α1t)(1−α2t)

(1−t)(1−qt) , where |αi | =
√

q
and α1α2 = q
Taking log of both sides of the equation

exp

( ∞∑
r=1

Nr
t r

r

)
=

(1− α1t)(1− α2t)
(1− t)(1− qt)

and equating coefficients gives for all r ≥ 1:

Nr = 1 + qr − (αr
1 + αr

2)

With r = 1 (and a bit more work), Hasse-Weil-Serre:

1 + q − b2
√

qc ≤ N1 ≤ 1 + q + b2
√

qc
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The zeta function of a smooth cubic surface

Z (X , t) = [deg 0][deg 0]
[deg 1][deg 7][deg 1] = 1

(1−t)P2(t)(1−q2t) , where

P2(t) = (1− qt)
∏6

j=1(1− αj t), with |αj | = q all j .
Taking log of both sides of the equation and equating
coefficients gives for all r ≥ 1:

Nr = 1 + q2r + qr +
6∑

j=1

αr
j

Tate conjecture (known to hold in this case, I think): the
rank of NS(X ) equals 1+ the number of αj equal to q.
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A test case – cubic surface codes

Construct codes from X a smooth cubic surface in P3.
A first observation: there are many more differences
between cubics than between quadrics – different numbers
of Fq-points, different ranks of NS(X ), etc.
Fortunately, this is a well-studied area, starting with work of
Cayley and Salmon from the 1850’s (over C).
“Fact 1:” Over an algebraically closed field, a smooth cubic
surface contains exactly 27 straight lines, always in a
particular highly symmetric and intricate configuration.
Symmetry group of the 27 lines is a group of order 51840
(= W (E6))
For some X , some lines may only be defined over an
algebraic extension of Fq
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The Clebsch cubic

Figure: A cubic surface with 27 real lines
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The Frobenius action on the 27 lines

Because we assume X is defined over Fq (where all a ∈ Fq
satisfy aq = a), the Frobenius mapping
F : (x , y , z,w)→ (xq, yq, zq,wq) takes X to itself
⇒ F also acts as a permutation of the lines on the cubic
over the algebraic closure Fq

There is a complete classification of the conjugacy classes
in W (E6).
Which class F (acting on the 27 lines) belongs to
determines the structure of the cubic!
25 possibilities summarized in two tables from a 1967
paper of Swinnerton-Dyer (and in a related table in Manin’s
Cubic Forms).
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An extract from the Swinnerton-Dyer table

Exactly five types of cubics with rank NS(X ) = 1 (⇒ no
Fq-rational lines)

Class PermType N1 = |X (Fq)| ord(ηj)

C10 {3,63,6} q2 − q + 1 2,2,3,3,6,6
C11 {39} q2 − 2q + 1 3,3,3,3,3,3
C12 {3,64} q2 + 2q + 1 3,3,6,6,6,6
C13 {3,123} q2 + 1 3,3,12,12,12,12
C14 {93} q2 + q + 1 9,9,9,9,9,9

Notes: ηj is a primitive ord(ηj)th root of unity with αj = ηjq.
Knowing the ηj allows us to compute Nr for all r ≥ 1 as before.
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Some experimental results for s = 1 codes

Generated cubic surfaces randomly, classified them by looking
at the numbers of Fqr -points for r = 1,2,3, whether they
contained lines defined over Fq, etc. With q = 7, for instance:

C10 – found [43,4,30] and [43,4,31] examples (best
possible d = 35)
C11 – found [36,4,23] and [36,4,24] examples (best
possible 28 ≤ d ≤ 29)
C12 – all [64,4,51] (several hundred of them) (best
possible 52 ≤ d ≤ 53)
C13 (very rare) – found [50,4,37] (best possible d = 42)
C14 (rare) – found [57,4,44] (best possible d = 47)
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What to make of all this?

C12 cubics are clearly the best for this construction.
Also, confirmation of Zarzar’s ansatz. Cubics with
rank NS(X ) > 1 can have reducible plane sections with as
many as 3q + 1 = 22 points with q = 7. The largest
number of F7-points we were seeing in plane sections here
for q = 7 is, e.g., 64− 51 = 13.
Why 13? Recall the Hasse-Weil-Serre bound: The
maximum number of F7-points on a smooth plane cubic is
1 + 7 + b2

√
7c = 13. Moreover, singular (but irreducible)

plane sections all have either q = 7 (“split” node),
q + 1 = 8 (cusp), or q + 2 = 9 (“non-split” node) Fq-points.
Note: Some of the C10 and C11 surfaces don’t have any
plane sections with 13 F7-points.
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A conjecture

Based on lots of additional experimental evidence for prime
powers q ≤ 37,

Conjecture
For all q ≥ 5 a C12 cubic always contains optimal cubic plane
sections, i.e. plane sections with the maximum number of
Fq-points for a smooth plane cubic curve.
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C12 cubics – a closer look

For C12 surfaces, can extract the following additional
information from Swinnerton-Dyer:

All the lines on a C12 are defined over Fq6 (the degree 6
extension field of Fq).
The Frobenius orbits on the lines consist of:

one coplanar 3-cycle (⇒ those lines are defined over Fq3 ),
and
four 6-cycles, each consisting of two coplanar triangles,
where F takes a line in one triangle to a line in the other
triangle (⇒ those triangles and the planes containing them
are defined over Fq2 )
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Well, so what?

The information about the Frobenius orbits of the lines implies:

Theorem
The equation of a C12 cubic surface can be written (in four
different ways) as

` · F (`) · F 2(`) = m · n · F (n) (1)

where ` = 0 is a plane defined over Fq3 , m = 0 is a plane
defined over Fq, and n = 0 is a plane defined over Fq2 .

The idea: m = 0 defines the plane of the 3-cycle orbit, which
consists of m = F i(`) = 0, i = 0,1,2. A 6-cycle orbit consists of
the other 6 “obvious lines” from (1).
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More details

The “obvious lines” mentioned before are the

n = ` = 0, F (n) = F (`) = 0, n = F 2(`) = 0
F (n) = ` = 0, n = F (`) = 0, F (n) = F 2(`) = 0

coming from the form of the equation (1).
�

It is not the case that every cubic with an equation of the
form (1) is a C12, though. There are also C10’s and C23’s of this
form.
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Two final (vague) observations

The form (1)

` · F (`) · F 2(`) = m · n · F (n)

is quite reminiscent of the Weierstrass form of an elliptic
curve when you look at it the right way over Fq:

(irreducible cubic in x) = wy2

By taking plane sections of (1), might be possible to use
known facts about Weierstrass equations(!)
But there’s got to be a pigeonhole principle component too
because the ultimate idea (if the conjecture is true!) has to
be: X has lots of Fq-points⇒ some plane section has lots
of Fq-points.
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