Cubic Surfaces and Codes

John B. Little

Department of Mathematics and Computer Science Faculty Seminar

November 12, 2014

John B. Little Cubic Surfaces and Codes

ヘロト 人間 とくほとくほとう

3

Outline

2 Evaluation codes from algebraic varieties

Interlude – counting rational points on varieties

・ 同 ト ・ ヨ ト ・ ヨ ト

A disclaimer

As you will see, this is very much work in progress and I don't quite have the "punchline" yet. *Thanks for the opportunity to speak on this though*. The process of preparing this talk has been a good way to take stock of where I am in this project!

・ 同 ト ・ 三 ト ・

"A Mathematical Theory of Communication," Claude Shannon (1948)

John B. Little Cubic Surfaces and Codes

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

This is a *very general* framework, incorporating examples such as

- communication with deep space exploration craft (Mariner, Voyager, etc. – the most important early application)
- storing/retrieving information in computer memory
- storing/retrieving audio information (CDs)
- storing/rerieving video information (DVD and Blu-Ray disks)
- wireless communication

A main goal of coding theory is the design of coding schemes that achieve *error control*: ability to detect and correct errors in received messages.

The case we will look at

- We'll consider "linear block codes" vector subspaces C of \mathbb{F}_q^n for some n.
- Parameters [n, k, d]: the blocklength n, the dimension k = dim_{F_q}(C), and the Hamming minimum weight/distance

$$d = \min_{x \neq 0 \in C} \operatorname{weight}(x) = \min_{x \neq y \in C} d(x, y)$$

- *t* = ⌊ d-1/2) ⇒ all errors of weight ≤ *t* can be corrected by "nearest neighbor decoding"
- Good codes: k/n not too small (so not extremely redundant), but at same time d or d/n not too small.

(日) (四) (日) (日) (日)

Evaluation code basics

Idea (in this form) goes back to work of Goppa from the late 1970's - early 1980's

- Let X be an algebraic variety defined over \mathbb{F}_q , with $S = \{P_1, \dots, P_n\} \subseteq X(\mathbb{F}_q)$.
- Let *L* be some vector subspace of the field of rational functions on *X* with *f*(*P_i*) defined for all *f* ∈ *L* and *P_i*.
- Then consider the *evaluation map*

$$ev: \mathcal{L} \rightarrow \mathbb{F}_q^n$$

$$f \mapsto (f(P_1), \dots, f(P_n))$$

 Image is a linear code of blocklength *n*, dimension k ≤ dim L, d depends on properties of X, S, L

The "ur-examples"

The well-known (and extensively used) Reed-Solomon codes RS(k, q) are obtained with this construction by taking X = ℙ¹, n = q − 1, and S the set of nonzero affine 𝔽_q-rational points of ℙ₁.

$$\mathcal{L} = \operatorname{Span}\{1, x, \dots, x^{k-1}\} = L((k-1)P_{\infty}) \ (k < q).$$

- This evaluation code has d = (q-1) - (k-1) = n - k + 1, since some polynomials of degree $\leq k - 1$ have k - 1 roots in \mathbb{F}_q , but no more
- A general bound says this is the *biggest possible d* for a given *n*, *k*(!)
- Goppa codes replace ℙ¹ with other algebraic curves over 𝔽_q. Known: can get some *very good* codes with this construction for q > 49, q a square.

What about higher-dimensional varieties X?

- Codes from some special varieties (quadrics, Hermitian varieties, Grassmannians, flag varieties, toric varieties, types of algebraic surfaces ...) have been investigated, but this subject is still really in its infancy
- One recurrent pattern: If $X \subset \mathbb{P}^n$ for some $n > \dim X$, and \mathcal{L} has the form $\{f/g \mid f \in \mathbb{F}_q[x_0, \ldots, x_n]_s\}$ for some *degree s*, then *d* can be (much) smaller than we hope because some $X \cap \mathbf{V}(f)$ can be *reducible* and contain lots of \mathbb{F}_q -rational points $\Rightarrow ev(f)$ are codewords of low weight.

ヘロト ヘワト ヘビト ヘビト

Example – s = 1 codes from quadric surfaces

- Say q is odd to rule out characteristic 2 "weirdness"
- Smooth quadrics in P³ come in two "flavors"
- *hyperbolic*: ruled surfaces like hyperbolic paraboloids (e.g. V(xy zw)). Have $X \simeq \mathbb{P}^1 \times \mathbb{P}^1$ in Segre embedding so $|X(\mathbb{F}_q)| = q^2 + 2q + 1$.
- *elliptic*: non-ruled analogous to real ellipsoids. Have $|X(\mathbb{F}_q)| = q^2 + 1$ in this case.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Example, continued

 Fix a linear form g so Y = V(g) ∩ X a smooth conic (q + 1 F_q-points), take S = X(F_q) − Y(F_q), so n = q² + q in hyperbolic case and n = q² − q in elliptic case.

• Take
$$\mathcal{L} = \mathbb{F}_q[x, y, z, w]_1/g$$
.

- In the elliptic case, every plane V(f) for f ∈ F_q[x, y, z, w]₁ meets X in either a single point or in a smooth conic (q + 1 F_q-points). Therefore, d = q² − q − 1.
- In the hyperbolic case, the tangent planes to X at 𝔽_q-points intersect X in reducible conics consisting of two lines, so 2q + 1 𝔽_q-points and d = q² − q − 1 again.
- *But* codes from elliptic quadrics are *much better* the same *d* for a smaller *n*.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Zarzar's ansatz

In his 2007 U. Texas PhD thesis, Marcos Zarzar discussed the following idea.

- Take dim X = 2. Zeroes in codewords of an evaluation code come from 𝔽_q-points in V(f) ∩ X for f/g ∈ ℒ. But as above for quadrics, if V(f) ∩ X is reducible (and q >> 0) it can contain many more 𝔽_q-rational points than corresponding smooth V(f) ∩ X (can quantify this).
- So good codes should come from surfaces X containing few (or no) reducible curves of small degree relative to the degree of the f from L.

ヘロト ヘアト ヘヨト ヘ

The Neron-Severi group

Precise statement uses an important invariant of algebraic varieties—the *Neron-Severi* group of *divisors classes modulo algebraic equivalence*.

This refers to divisors rational over the field of definition of X.

- For elliptic quadrics, NS(X) = ℤ · [H], H = any smooth conic plane section
- For hyperbolic quadrics, NS(X) = Z · [L₁] ⊕ Z · [L₂], where L_i are lines in the two rulings

Fact noted by Zarzar: If deg X = d with $(d, char(\mathbb{F}_q)) = 1$, rank(NS(X)) = 1, and Y irreducible over \mathbb{F}_q with deg Y < d, then $X \cap Y$ is irreducible.

イロン イ理 とく ヨン イヨン

Counting \mathbb{F}_q -points on varieties – the zeta function

- For any given X and q, it is, of course, a finite problem to determine all 𝔽_q-points on X by "brute force."
- But there is also an extremely elegant and beatiful theory based on the generating function known as the *zeta function* of *X*.
- Let X be defined over \mathbb{F}_q and let $N_r = |X(\mathbb{F}_{q^r})|$.

Then

$$Z(X,t) = \exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\right)$$

ヘロト ヘアト ヘビト ヘビト

The Weil Conjectures (Dwork, Deligne, ...)

- Say X can be viewed as reduction of a scheme over Z
- *Z*(*X*, *t*) is a *rational function* of *t* whose numerator and denominator factor into polynomials
 - reflecting shape of cohomology of the complex variety $X(\mathbb{C})$, and
 - and whose roots have special algebraic properties.
- Best way to explain this is by giving the examples most relevant to our story ...

イロト イポト イヨト イヨト

The zeta function of a smooth plane cubic curve

•
$$Z(X,t) = \frac{[deg \ 2]}{[deg \ 1][deg \ 1]} = \frac{(1-\alpha_1 t)(1-\alpha_2 t)}{(1-t)(1-qt)}$$
, where $|\alpha_i| = \sqrt{q}$
and $\alpha_1 \alpha_2 = q$

Taking log of both sides of the equation

$$\exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\right) = \frac{(1-\alpha_1 t)(1-\alpha_2 t)}{(1-t)(1-qt)}$$

and equating coefficients gives for all $r \ge 1$:

$$N_r = 1 + q^r - (\alpha_1^r + \alpha_2^r)$$

• With r = 1 (and a bit more work), Hasse-Weil-Serre:

$$1 + q - \lfloor 2\sqrt{q}
floor \leq N_1 \leq 1 + q + \lfloor 2\sqrt{q}
floor$$

イロト イポト イヨト イヨト

The zeta function of a smooth cubic surface

•
$$Z(X,t) = \frac{[deg \ 0][deg \ 0]}{[deg \ 1][deg \ 7][deg \ 1]} = \frac{1}{(1-t)P_2(t)(1-q^2t)}$$
, where $P_2(t) = (1-qt)\prod_{j=1}^6 (1-\alpha_j t)$, with $|\alpha_j| = q$ all j .

 Taking log of both sides of the equation and equating coefficients gives for all r ≥ 1:

$$N_r = 1 + q^{2r} + q^r + \sum_{j=1}^6 \alpha_j^r$$

 Tate conjecture (known to hold in this case, I think): the rank of NS(X) equals 1+ the number of α_i equal to q.

ヘロト ヘワト ヘビト ヘビト

A test case – cubic surface codes

- Construct codes from X a smooth cubic surface in \mathbb{P}^3 .
- A first observation: there are *many more* differences between cubics than between quadrics – different numbers of 𝔽_q-points, different ranks of *NS(X)*, etc.
- Fortunately, this is a well-studied area, starting with work of Cayley and Salmon from the 1850's (over ℂ).
- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 straight lines, always in a particular highly symmetric and intricate configuration.
- Symmetry group of the 27 lines is a group of order 51840 (= W(E₆))
- For some X, some lines may only be defined over an algebraic extension of \mathbb{F}_q

The Clebsch cubic

Figure: A cubic surface with 27 real lines

John B. Little Cubic Surfaces and Codes

イロト 不得 とくほと くほとう

3

The Frobenius action on the 27 lines

- Because we assume X is defined over F_q (where all a ∈ F_q satisfy a^q = a), the Frobenius mapping
 F : (x, y, z, w) → (x^q, y^q, z^q, w^q) takes X to itself
- \Rightarrow *F* also acts as a permutation of the lines on the cubic over the algebraic closure $\overline{\mathbb{F}_q}$
- There is a complete classification of the conjugacy classes in W(E₆).
- Which class *F* (acting on the 27 lines) belongs to determines the structure of the cubic!
- 25 possibilities summarized in two tables from a 1967 paper of Swinnerton-Dyer (and in a related table in Manin's *Cubic Forms*).

ヘロト 人間 とくほとく ほとう

ъ

An extract from the Swinnerton-Dyer table

Exactly five types of cubics with rank $NS(X) = 1 \iff no$ \mathbb{F}_q -rational lines)

Class	PermType	$N_1 = X(\mathbb{F}_q) $	$\operatorname{ord}(\eta_j)$
C_{10}	$\{3, 6^3, 6\}$	$q^2 - q + 1$	2, 2, 3, 3, 6, 6
C_{11}	{ 3 ⁹ }	<i>q</i> ² – 2 <i>q</i> + 1	3, 3, 3, 3, 3, 3, 3
C_{12}	$\{3, 6^4\}$	$q^2 + 2q + 1$	3, 3, 6, 6, 6, 6
C_{13}	$\{3, 12^3\}$	<i>q</i> ² + 1	3, 3, 12, 12, 12, 12
C_{14}	{ 9 ³ }	$q^2 + q + 1$	9,9,9,9,9,9

Notes: η_j is a primitive $\operatorname{ord}(\eta_j)$ th root of unity with $\alpha_j = \eta_j q$. Knowing the η_j allows us to compute N_r for all $r \ge 1$ as before.

・ロト ・ 理 ト ・ ヨ ト ・

Some experimental results for s = 1 codes

Generated cubic surfaces randomly, classified them by looking at the numbers of \mathbb{F}_{q^r} -points for r = 1, 2, 3, whether they contained lines defined over \mathbb{F}_q , etc. With q = 7, for instance:

- C₁₀ found [43, 4, 30] and [43, 4, 31] examples (best possible d = 35)
- C₁₁ found [36, 4, 23] and [36, 4, 24] examples (best possible 28 ≤ d ≤ 29)
- C₁₂ − all [64, 4, 51] (several hundred of them) (best possible 52 ≤ d ≤ 53)
- *C*₁₃ (very rare) found [50, 4, 37] (best possible *d* = 42)
- *C*₁₄ (rare) found [57, 4, 44] (best possible *d* = 47)

・ロト ・ 理 ト ・ ヨ ト ・

What to make of all this?

- C_{12} cubics are clearly the best for this construction.
- Also, confirmation of Zarzar's *ansatz*. Cubics with rank NS(X) > 1 can have reducible plane sections with as many as 3q + 1 = 22 points with q = 7. The largest number of \mathbb{F}_7 -points we were seeing in plane sections here for q = 7 is, e.g., 64 51 = 13.
- Why 13? Recall the Hasse-Weil-Serre bound: The maximum number of F₇-points on a smooth plane cubic is 1 + 7 + [2√7] = 13. Moreover, singular (but irreducible) plane sections all have either q = 7 ("split" node), q + 1 = 8 (cusp), or q + 2 = 9 ("non-split" node) F_q-points.
- Note: Some of the C₁₀ and C₁₁ surfaces don't have any plane sections with 13 𝔽₇-points.

A conjecture

Based on lots of additional experimental evidence for prime powers $q \leq 37$,

Conjecture

For all $q \ge 5$ a C_{12} cubic always contains optimal cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_q -points for a smooth plane cubic curve.

C_{12} cubics – a closer look

For C_{12} surfaces, can extract the following additional information from Swinnerton-Dyer:

- All the lines on a C₁₂ are defined over 𝔽_{q⁶} (the degree 6 extension field of 𝔽_q).
- The Frobenius orbits on the lines consist of:
 - one coplanar 3-cycle (\Rightarrow those lines are defined over \mathbb{F}_{q^3}), and
 - four 6-cycles, each consisting of two coplanar triangles, where *F* takes a line in one triangle to a line in the other triangle (\Rightarrow those triangles and the planes containing them are defined over \mathbb{F}_{q^2})

<ロト <回 > < 注 > < 注 > 、

Well, so what?

The information about the Frobenius orbits of the lines implies:

Theorem

The equation of a C_{12} cubic surface can be written (in four different ways) as

$$\ell \cdot F(\ell) \cdot F^2(\ell) = m \cdot n \cdot F(n) \tag{1}$$

ヘロト ヘワト ヘビト ヘビト

where $\ell = 0$ is a plane defined over \mathbb{F}_{q^3} , m = 0 is a plane defined over \mathbb{F}_q , and n = 0 is a plane defined over \mathbb{F}_{q^2} .

The idea: m = 0 defines the plane of the 3-cycle orbit, which consists of $m = F^i(\ell) = 0$, i = 0, 1, 2. A 6-cycle orbit consists of the other 6 "obvious lines" from (1).

More details

The "obvious lines" mentioned before are the

$$n = \ell = 0, \quad F(n) = F(\ell) = 0, \quad n = F^2(\ell) = 0$$

 $F(n) = \ell = 0, \quad n = F(\ell) = 0, \quad F(n) = F^2(\ell) = 0$

coming from the form of the equation (1).

It is *not* the case that *every* cubic with an equation of the form (1) is a C_{12} , though. There are also C_{10} 's and C_{23} 's of this form.

(日)

Two final (vague) observations

• The form (1)

$$\ell \cdot F(\ell) \cdot F^2(\ell) = m \cdot n \cdot F(n)$$

is quite reminiscent of the *Weierstrass form* of an elliptic curve when you look at it the right way over \mathbb{F}_q :

(irreducible cubic in x) = wy^2

By taking plane sections of (1), might be possible to use known facts about Weierstrass equations(!)

But there's got to be a *pigeonhole principle* component too because the ultimate idea (if the conjecture is true!) has to be: X has lots of 𝔽_q-points ⇒ some plane section has lots of 𝔽_q-points.