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Evaluation codes

X an algebraic variety over Fq, S = {P1, . . . ,Pn} ⊆ X (Fq),
L a vector space of functions on X with all f (Pi) defined.
The image of the evaluation map

ev : L → F n
q

f 7→ (f (P1), . . . , f (Pn))

is a linear code; k ≤ dimL; d depends on X , S, L.
Reed-Solomon codes RS(k ,q) are examples with X = P1,
S = F∗q ⊂ P1, and L = Span{1, x , . . . , xk−1} = L((k −1)P∞)
(k < q) (meet the Singleton bound).
AG Goppa codes: P1 7→ other curves over Fq.
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Goal for this work

What about higher-dimensional varieties X?

Some examples have been studied–e.g. projective
Reed-Muller codes from X = Pn

Codes from quadrics, Hermitian varieties, Grassmannians,
flag varieties, Deligne-Lusztig varieties
But, still really not much known!
We’ll concentrate on X a projective surface and
Reed-Muller-type codes with S = X (Fq), L = vector space
of homogeneous forms of some fixed degree s.
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Key issue with these codes; motivating example

One recurrent pattern: Low weight codewords tend to
come from f where X ∩ V(f ) is reducible (possibly if
q >> 0).
Example: X a quadric surface in P3.
If X is hyperbolic, |X (Fq)| = q2 + 2q + 1. Tangent planes
intersect X in reducible curves with 2q + 1 Fq-points.
But if X is elliptic, rulings not defined over Fq so
|X (Fq)| = q2 + 1, and planes meet X in curves with at
most q + 1 Fq-rational points.
s = 1 codes with S = X (Fq) have parameters:
[q2 + 2q + 1,4,q2] (hyperbolic) and [q2 + 1,4,q2 − q]
(elliptic – better – equals best known for q = 8,9).
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Ansatz from 2007 thesis of M. Zarzar (UT Austin)

NS(X ) = group of Fq-rational divisor classes modulo
algebraic equivalence (a finitely-generated abelian group)
Example: X an elliptic quadric: NS(X ) = Z · [H], H = a
smooth conic plane section; X a hyperbolic quadric:
NS(X ) = Z[L1]⊕ Z[L2] (lines from the two rulings).

Theorem (Zarzar)

If deg X = d with (d , char(Fq)) = 1, rank(NS(X )) = 1, and Y
irreducible over Fq with deg Y < d, then X ∩ Y is irreducible.

So (key idea) – good codes (might) come from surfaces X
with Picard number = rank NS(X ) = 1 (or small).
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A test case – cubic surface codes

“Fact 1:” Over an algebraically closed field, a smooth cubic
surface contains exactly 27 lines, always in a particular
highly symmetric configuration.
Symmetry group of the 27 lines is a group of order 51840
(= W (E6))
Frobenius acts as a permutation of the lines
There is a complete classification of the conjugacy classes
in W (E6); the class where Frobenius lies determines the
Fq-structure!
The 25 possibilities summarized in a 1967 paper of
Swinnerton-Dyer (and in a related table in Manin’s book
Cubic Forms).
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An extract from the Swinnerton-Dyer table

Exactly five types of cubics with Picard number = 1 (⇒ no
Fq-rational lines or conics)

Class Perm Type of Frob |X (Fq)|
C10 {3,63,6} q2 − q + 1
C11 {39} q2 − 2q + 1
C12 {3,64} q2 + 2q + 1
C13 {3,123} q2 + 1
C14 {93} q2 + q + 1
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Some experimental results

With q = 7, the s = 1 (and s = 2) codes look like this:

C10 – [43,4,30] and [43,4,31] examples (but best known
is d = 35)
C11 – [36,4,23] and [36,4,24] examples (but best possible
is 28 ≤ d ≤ 29)
C12 – [64,4,51] examples (but best possible is
52 ≤ d ≤ 53) (also s = 2 with [64,10,38], but best
possible is 41 ≤ d ≤ 48)
C13 (very rare) – [50,4,37] (but best known is d = 42)
C14 (rare) – [57,4,44] (but best known is d = 47)
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What to make of all this?

Among these, C12 cubics are the best for this construction,
but still not that great
Plane sections of cubics with Picard number > 1 can have
up to 3q + 1 Fq-points (Eckardt points as in Amanda
Knecht’s talk!) Largest number of F7-points here is e.g.,
64− 51 = 13 (⇒ confirmation of Zarzar’s Ansatz)
Why 13? Hasse-Weil-Serre bound: The maximum number
of F7-points on a smooth plane cubic is
1 + 7 + b2

√
7c = 13 and attained. Singular (but irreducible)

plane sections all have either q = 7 (“split” node),
q + 1 = 8 (cusp), or q + 2 = 9 (“non-split” node) F7-points.
Note: Some C10 and C11 surfaces have no plane sections
with 13 F7-points.
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A byproduct of this experimentation

Based on lots of additional experimental evidence for prime
powers q ≤ 37,

Conjecture
For all q ≥ 5, C12 cubics always have optimal cubic plane
sections, i.e. plane sections with the maximum number of
Fq-points for a smooth plane cubic curve.

Have verified this completely for q up to 13 by “brute force,” but
is there a deeper reason why it should hold?

Also would show s = 1 codes from C12 cubics do not give any
“new bests” for larger q.
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Some bounds – sectional genus of X also matters!

Notation: C(X , s,Fq) = degree s code on a projective surface
X .

Theorem
Assume (deg X , char(Fq)) = 1 and Picard number of X = 1.
Writing d1 = d(C(X ,1,Fq)), g = sectional genus,

n − d1 ≤ 1 + q + gb2
√

qc.

Corollary
In situation of theorem, if q is sufficiently large, then writing
ds = d(C(X , s,Fq)),

n − ds ≤ s(n − d1).
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Sectional genus g = 0

Theorem
If S is a smooth abstract surface and L is an ample line bundle
with g(L) = 0, then (S,L) is one of the following:

(P2,OP2(r)), r = 1,2.
(Q,OQ(1))

a Hirzebruch surface (Fr ,OFr (E + sf )), s ≥ r + 1.

In other words, few examples, and those are pretty well
understood from coding theory perspective – e.g. codes from
scrolls (C. Carvalho’s talk), toric surface codes.
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Higher sectional genus surfaces not promising

Consider the surface Xm in P3 given by

0 = wm + xym−1 + yzm−1 + zxm−1.

Shioda: rank NS(X ) = 1 over C if m ≥ 5 (and K3 with
rank NS(X ) = 20 for m = 4).
For m = 4, reduction of X4 may have no Fq-lines or conics
⇒ no reducible plane sections.
With q = 11 and s = 1, C(S4,1,F11) is [144,4,120].
Min. weight codewords↔ smooth plane quartics (g = 3)
with 24 F11-rational points (optimal for g = 3 by
manypoints.org).
C12 cubics over F11: all give [144,4,126] codes: g = 1
curves over F11 have at most 18 rational points.
Similarly for m ≥ 5.
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A better sectional genus 1 example

Consider the linear system of cubics in P2 through a
general Frobenius orbit O3 = {P,F (P),F 2(P)}
(P ∈ P2(Fq3))

dim = 7, so defines a rational map P2 into P6

Image is a degree 6 del Pezzo surface X over Fq,
Blows up the points in O3 to lines, but defined over Fq3 , not
Fq.
⇒ Picard number equal to 2
NS(X ) is generated by classes of proper transforms of
conics in P2 through O3, and lines in P2.
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How to determine the Picard number

The zeta function of X has the form

Z (X , t) =
[deg 0][deg 0]

[deg 1][deg 4][deg 1]
=

1
(1− t)P2(t)(1− q2t)

,

where P2(t) = (1− qt)
∏3

j=1(1− αj t), with |αj | = q all j .
Usual zeta function “yoga”:

|X (Fqr )| = 1+q2r+qr+
3∑

j=1

αr
j =

{
1 + q2r + qr r ≡ 1,2 mod 3
1 + q2r + 4qr r ≡ 0 mod 3

⇒ αj = q,e2πi/3q,e4πi/3q. Tate: the Picard number of X
equals 1+ the number of αj equal to q.
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(More) interesting codes!

Theorem (also see Couvreur (1))

C(X ,1,Fq) is a [q2 + q + 1,7,q2 − q − 1] code over Fq.

(Min weight words from reducible cubics: conic through O3
union a line meeting the conic in a pair of conjugate Fq2-points)
For q = 7,8,9 this equals the best known d for these n, k
according to Grassl’s tables.

Conjecture

C(X ,2,Fq) is a [q2 + q + 1,19,q2 − 3q − 1] code over Fq.

Would be new best for q = 7,9 and equal best known for q = 8.
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Thanks for your attention!
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