Codes from surfaces with small Picard number

John B. Little/joint work with Hal Schenck

College of the Holy Cross/University of Illinois -Fg12 – Saratoga Springs

July 17, 2015

イロト イポト イヨト イヨト

Evaluation codes

- X an algebraic variety over 𝔽_q, 𝔅 = {𝒫₁,...,𝒫_n} ⊆ 𝑋(𝔽_q),
 𝔅 a vector space of functions on 𝑋 with all 𝑓(𝒫_i) defined.
- The image of the evaluation map

$$\begin{array}{rcl} ev: \mathcal{L} & \to & \mathbb{F}_q^n \\ f & \mapsto & (f(P_1), \dots, f(P_n)) \end{array}$$

is a linear code; $k \leq \dim \mathcal{L}$; *d* depends on *X*, *S*, *L*.

- Reed-Solomon codes RS(k, q) are examples with $X = \mathbb{P}^1$, $S = \mathbb{F}_q^* \subset \mathbb{P}^1$, and $\mathcal{L} = \text{Span}\{1, x, \dots, x^{k-1}\} = L((k-1)P_{\infty})$ (k < q) (meet the Singleton bound).
- AG Goppa codes: $\mathbb{P}^1 \mapsto \text{other curves over } \mathbb{F}_q$.

イロト イポト イヨト イヨト

Goal for this work

What about higher-dimensional varieties X?

くロト (過) (目) (日)

3

Goal for this work

- What about higher-dimensional varieties X?
- Some examples have been studied–e.g. *projective Reed-Muller codes* from $X = \mathbb{P}^n$

くロト (過) (目) (日)

æ

Goal for this work

- What about higher-dimensional varieties X?
- Some examples have been studied–e.g. *projective Reed-Muller codes* from $X = \mathbb{P}^n$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Goal for this work

- What about higher-dimensional varieties X?
- Some examples have been studied–e.g. *projective Reed-Muller codes* from $X = \mathbb{P}^n$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties
- But, still really not much known!

・ 回 ト ・ ヨ ト ・ ヨ ト

Goal for this work

- What about higher-dimensional varieties X?
- Some examples have been studied–e.g. *projective Reed-Muller codes* from $X = \mathbb{P}^n$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties
- But, still really not much known!
- We'll concentrate on X a projective surface and *Reed-Muller-type* codes with S = X(F_q), L = vector space of homogeneous forms of some fixed degree s.

ヘロト 人間 ト ヘヨト ヘヨト

Key issue with these codes; motivating example

- One recurrent pattern: Low weight codewords tend to come from *f* where X ∩ V(*f*) is *reducible* (possibly if *q* >> 0).
- Example: X a quadric surface in \mathbb{P}^3 .
- If X is hyperbolic, |X(𝔽_q)| = q² + 2q + 1. Tangent planes intersect X in reducible curves with 2q + 1 𝔽_q-points.
- But if X is *elliptic*, rulings not defined over 𝔽_q so |X(𝔽_q)| = q² + 1, and planes meet X in curves with at most q + 1 𝔽_q-rational points.
- s = 1 codes with $S = X(\mathbb{F}_q)$ have parameters: $[q^2 + 2q + 1, 4, q^2]$ (hyperbolic) and $[q^2 + 1, 4, q^2 - q]$ (elliptic – better – equals best known for q = 8, 9).

ヘロア 人間 アメヨア 人口 ア

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

- NS(X) = group of F_q-rational divisor classes modulo algebraic equivalence (a finitely-generated abelian group)
- Example: X an elliptic quadric: NS(X) = Z · [H], H = a smooth conic plane section; X a hyperbolic quadric: NS(X) = Z[L₁] ⊕ Z[L₂] (lines from the two rulings).

Theorem (Zarzar)

If deg X = d with $(d, char(\mathbb{F}_q)) = 1$, rank(NS(X)) = 1, and Y irreducible over \mathbb{F}_q with deg Y < d, then $X \cap Y$ is irreducible.

So (key idea) – good codes (might) come from surfaces X with Picard number = rank NS(X) = 1 (or small).

A test case – cubic surface codes

- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 lines, always in a particular highly symmetric configuration.
- Symmetry group of the 27 lines is a group of order 51840 (= W(E₆))
- Frobenius acts as a permutation of the lines
- There is a complete classification of the conjugacy classes in W(E₆); the class where Frobenius lies determines the F_q-structure!
- The 25 possibilities summarized in a 1967 paper of Swinnerton-Dyer (and in a related table in Manin's book *Cubic Forms*).

An extract from the Swinnerton-Dyer table

Exactly five types of cubics with Picard number = 1 (\Rightarrow *no* \mathbb{F}_q -rational lines or conics)

Class	Perm Type of Frob	$ X(\mathbb{F}_q) $
C_{10}	$\{3, 6^3, 6\}$	$q^2 - q + 1$
C_{11}	{ 3 ⁹ }	$q^2 - 2q + 1$
C_{12}	$\{3, 6^4\}$	$q^2 + 2q + 1$
C_{13}	$\{3, 12^3\}$	<i>q</i> ² + 1
C_{14}	{ 9 ³ }	$q^{2} + q + 1$

・ロト ・ 理 ト ・ ヨ ト ・

1

Some experimental results

With q = 7, the s = 1 (and s = 2) codes look like this:

- C₁₀ [43, 4, 30] and [43, 4, 31] examples (but best known is d = 35)
- C₁₁ − [36, 4, 23] and [36, 4, 24] examples (but best possible is 28 ≤ d ≤ 29)
- C₁₂ [64, 4, 51] examples (but best possible is 52 ≤ d ≤ 53) (also s = 2 with [64, 10, 38], but best possible is 41 ≤ d ≤ 48)
- C₁₃ (very rare) [50, 4, 37] (but best known is *d* = 42)
- C_{14} (rare) [57, 4, 44] (but best known is d = 47)

イロト 不得 とくほ とくほ とう

What to make of all this?

- Among these, *C*₁₂ cubics are the best for this construction, but still not that great
- Plane sections of cubics with Picard number > 1 can have up to 3q + 1 F_q-points (Eckardt points as in Amanda Knecht's talk!) Largest number of F₇-points here is e.g., 64 - 51 = 13 (⇒ confirmation of Zarzar's Ansatz)
- *Why 13?* Hasse-Weil-Serre bound: The maximum number of \mathbb{F}_7 -points on a smooth plane cubic is $1 + 7 + \lfloor 2\sqrt{7} \rfloor = 13$ and attained. Singular (but irreducible) plane sections all have either q = 7 ("split" node), q + 1 = 8 (cusp), or q + 2 = 9 ("non-split" node) \mathbb{F}_7 -points.
- Note: Some C₁₀ and C₁₁ surfaces have no plane sections with 13 𝔽₇-points.

A byproduct of this experimentation

Based on lots of additional experimental evidence for prime powers $q \leq 37$,

Conjecture

For all $q \ge 5$, C_{12} cubics always have **optimal** cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_q -points for a smooth plane cubic curve.

Have verified this completely for q up to 13 by "brute force," but is there a deeper reason why it should hold?

Also would show s = 1 codes from C_{12} cubics *do not* give any "new bests" for larger *q*.

Some bounds – sectional genus of X also matters!

Notation: $C(X, s, \mathbb{F}_q) = \text{degree } s \text{ code on a projective surface } X.$

Theorem

Assume $(\deg X, \operatorname{char}(\mathbb{F}_q)) = 1$ and Picard number of X = 1. Writing $d_1 = d(C(X, 1, \mathbb{F}_q))$, g = sectional genus,

$$n-d_1 \leq 1+q+g\lfloor 2\sqrt{q}
floor.$$

Corollary

In situation of theorem, if q is sufficiently large, then writing $d_s = d(C(X, s, \mathbb{F}_q))$,

$$n-d_s \leq s(n-d_1).$$

Sectional genus g = 0

Theorem

If S is a smooth abstract surface and L is an ample line bundle with g(L) = 0, then (S, L) is one of the following:

•
$$(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(r)), r = 1, 2.$$

- (*Q*, *O*_{*Q*}(1))
- a Hirzebruch surface $(F_r, \mathcal{O}_{F_r}(E + sf)), s \ge r + 1$.

In other words, few examples, and those are pretty well understood from coding theory perspective – e.g. codes from scrolls (C. Carvalho's talk), toric surface codes.

Higher sectional genus surfaces not promising

• Consider the surface X_m in \mathbb{P}^3 given by

$$0 = w^m + xy^{m-1} + yz^{m-1} + zx^{m-1}$$

Shioda: rank NS(X) = 1 over \mathbb{C} if $m \ge 5$ (and K3 with rank NS(X) = 20 for m = 4).

- For *m* = 4, reduction of *X*₄ may have no 𝔽_{*q*}-lines or conics
 ⇒ no reducible plane sections.
- With q = 11 and s = 1, $C(S_4, 1, \mathbb{F}_{11})$ is [144, 4, 120].
- Min. weight codewords ↔ smooth plane quartics (g = 3) with 24 F₁₁-rational points (optimal for g = 3 by manypoints.org).
- C₁₂ cubics over 𝔽₁₁: all give [144, 4, 126] codes: g = 1 curves over 𝔽₁₁ have at most 18 rational points.
- Similarly for $m \ge 5$.

A better sectional genus 1 example

- Consider the linear system of cubics in P² through a general Frobenius orbit O₃ = {P, F(P), F²(P)} (P ∈ P²(F_{q³}))
- dim = 7, so defines a rational map \mathbb{P}^2 into \mathbb{P}^6
- Image is a degree 6 del Pezzo surface X over \mathbb{F}_q ,
- Blows up the points in \mathcal{O}_3 to lines, but defined over \mathbb{F}_{q^3} , not \mathbb{F}_q .
- \Rightarrow Picard number equal to 2
- NS(X) is generated by classes of proper transforms of conics in P² through O₃, and lines in P².

How to determine the Picard number

• The zeta function of X has the form

$$Z(X,t) = \frac{[\deg 0][\deg 0]}{[\deg 1][\deg 4][\deg 1]} = \frac{1}{(1-t)P_2(t)(1-q^2t)},$$

where
$$P_2(t) = (1 - qt) \prod_{j=1}^3 (1 - \alpha_j t)$$
, with $|\alpha_j| = q$ all j.

• Usual zeta function "yoga":

$$|X(\mathbb{F}_{q^r})| = 1 + q^{2r} + q^r + \sum_{j=1}^{3} \alpha_j^r = \begin{cases} 1 + q^{2r} + q^r & r \equiv 1, 2 \mod 3\\ 1 + q^{2r} + 4q^r & r \equiv 0 \mod 3 \end{cases}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

• $\Rightarrow \alpha_j = q, e^{2\pi i/3}q, e^{4\pi i/3}q$. Tate: the Picard number of X equals 1+ the number of α_j equal to q.

(More) interesting codes!

Theorem (also see Couvreur (1))

 $C(X,1,\mathbb{F}_q)$ is a $[q^2+q+1,7,q^2-q-1]$ code over \mathbb{F}_q .

(Min weight words from reducible cubics: conic through \mathcal{O}_3 union a line meeting the conic in a pair of conjugate \mathbb{F}_{q^2} -points) For q = 7, 8, 9 this equals the best known d for these n, kaccording to Grassl's tables.

Conjecture

$$C(X, 2, \mathbb{F}_q)$$
 is a $[q^2 + q + 1, 19, q^2 - 3q - 1]$ code over \mathbb{F}_q .

Would be new best for q = 7,9 and equal best known for q = 8.

Thanks for your attention!

John B. Little/joint work with Hal Schenck Codes from surfaces with small Picard number

イロト 不得 とくほ とくほとう

References

- (1) A. Couvreur, Construction of rational surfaces yielding good codes, *Finite Fields Appl.* **17** (2011), 424-441.
- (2) J. Voloch and M. Zarzar, Algebraic geometric codes on surfaces, in "Arithmetic, geometry, and coding theory", *Sémin. Congr. Soc. Math. France*, **21** (2010), 211-216.
- (3) M. Zarzar, Error-correcting codes on low rank surfaces, *Finite Fields Appl.* **13** (2007), 727-737.

→ Ξ → < Ξ →</p>