Continua of Central Configurations with a Negative Mass in the n-Body Problem

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross, Worcester MA
AMS Special Session on Celestial Mechanics
JMM, San Diego

January 9, 2013

Work done at PURE Math 2012 REU-type program at University of Hawai'i at Hilo; joint with

- Julian Hachmeister (undergraduate, UH Hilo)
- Jasmine McGhee (undergraduate, Loyola Marymount)
- Roberto Pelayo (UH Hilo)
- Spencer Sasarita (undergraduate, U Arizona)

To appear, Celestial Mechanics and Dynamical Astronomy.

Central Configurations

- We will focus on central configurations ("c.c.'s") in the Newtonian n-body problem

Central Configurations

- We will focus on central configurations ("c.c.'s") in the Newtonian n-body problem
- A c.c. (with center of mass at $\overline{\mathbf{q}}$) is a configuration such that the acceleration vector of each body is proportional to the displacement vector from center of mass, all with the same proportionality constant. That is,

Central Configurations

- We will focus on central configurations ("c.c.'s") in the Newtonian n-body problem
- A c.c. (with center of mass at $\overline{\mathbf{q}}$) is a configuration such that the acceleration vector of each body is proportional to the displacement vector from center of mass, all with the same proportionality constant. That is,
- (Setting $G=1$ and writing \mathbf{q}_{i} for location of i th body):

$$
\mathbf{A}_{i}=\sum_{j \neq i} \frac{m_{j}\left(\mathbf{q}_{j}-\mathbf{q}_{i}\right)}{r_{i j}^{3}}=\omega^{2}\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right)
$$

The big problem

- A major question here is: Given n masses m_{1}, \ldots, m_{n}, at how many different locations can these be placed to get central configurations? (Usually in \mathbb{R}^{2} or \mathbb{R}^{3}, but makes sense mathematically in higher dimensions too.)

The big problem

- A major question here is: Given n masses m_{1}, \ldots, m_{n}, at how many different locations can these be placed to get central configurations? (Usually in \mathbb{R}^{2} or \mathbb{R}^{3}, but makes sense mathematically in higher dimensions too.)
- Can translate, rotate, and scale c.c.'s and the results are again c.c.'s

The big problem

- A major question here is: Given n masses m_{1}, \ldots, m_{n}, at how many different locations can these be placed to get central configurations? (Usually in \mathbb{R}^{2} or \mathbb{R}^{3}, but makes sense mathematically in higher dimensions too.)
- Can translate, rotate, and scale c.c.'s and the results are again c.c.'s
- Convention: Two c.c.'s are equivalent if one can be taken into the other by a composition of a rigid motion (translation, rotation) and a scaling in \mathbb{R}^{k}

The big problem

- A major question here is: Given n masses m_{1}, \ldots, m_{n}, at how many different locations can these be placed to get central configurations? (Usually in \mathbb{R}^{2} or \mathbb{R}^{3}, but makes sense mathematically in higher dimensions too.)
- Can translate, rotate, and scale c.c.'s and the results are again c.c.'s
- Convention: Two c.c.'s are equivalent if one can be taken into the other by a composition of a rigid motion (translation, rotation) and a scaling in \mathbb{R}^{k}
- More precise form of question: Is the set of equivalence classes of (planar, or ...) central configurations finite? On Smale's 21st century problem list.

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)
- Yes for collinear configurations, all n (Moulton)

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)
- Yes for collinear configurations, all n (Moulton)
- Yes for $n=4$ (Hampton and Moeckel)

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)
- Yes for collinear configurations, all n (Moulton)
- Yes for $n=4$ (Hampton and Moeckel)
- Quite strong results for $n=5$ (Albouy and Kaloshin)

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)
- Yes for collinear configurations, all n (Moulton)
- Yes for $n=4$ (Hampton and Moeckel)
- Quite strong results for $n=5$ (Albouy and Kaloshin)
- Only fairly limited special cases known in general

Status of the "big problem"

- Yes for $n=3$ (Euler, Lagrange)
- Yes for collinear configurations, all n (Moulton)
- Yes for $n=4$ (Hampton and Moeckel)
- Quite strong results for $n=5$ (Albouy and Kaloshin)
- Only fairly limited special cases known in general
- Question is subtle algebraically. For instance, by work of Gareth Roberts (Physica D 127 (1999), 141-145), there collections of $n=5$ masses, one negative, for which there is a curve of equivalence classes of c.c.'s (a "continuum")

Geometry of Roberts' "rhombus +1"

- Choose coordinates so

$$
\mathbf{q}_{0}=(0,0), \mathbf{q}_{1}=(\cos (t), 0)=-\mathbf{q}_{2}, \mathbf{q}_{3}=(0, \sin (t))=-\mathbf{q}_{4} .
$$

Geometry of Roberts' "rhombus +1"

- Choose coordinates so

$$
\mathbf{q}_{0}=(0,0), \mathbf{q}_{1}=(\cos (t), 0)=-\mathbf{q}_{2}, \mathbf{q}_{3}=(0, \sin (t))=-\mathbf{q}_{4} .
$$

- Let $m_{i}=1$ for $i=1, \ldots, 4$, and $m_{0}=-\frac{1}{4}$.

Geometry of Roberts' "rhombus +1"

- Choose coordinates so

$$
\mathbf{q}_{0}=(0,0), \mathbf{q}_{1}=(\cos (t), 0)=-\mathbf{q}_{2}, \mathbf{q}_{3}=(0, \sin (t))=-\mathbf{q}_{4} .
$$

- Let $m_{i}=1$ for $i=1, \ldots, 4$, and $m_{0}=-\frac{1}{4}$.
- The center of mass of the configuration, $\overline{\mathbf{q}}$, is located at the origin.

Roberts' "rhombus +1"

Figure: Rhombus with Roberts' parametrization

How it works

- For the 3rd body, for instance, it's clear x-component of acceleration is zero.

How it works

- For the 3rd body, for instance, it's clear x-component of acceleration is zero.
- The y-component is

$$
\begin{aligned}
\mathbf{A}_{3, y} & =-\frac{-\sin (\theta)}{4 \sin ^{3}(\theta)}-\sin (\theta)-\sin (\theta)+\frac{2 \sin (\theta)}{8 \sin ^{3}(\theta)} \\
& =-2 \sin (\theta)
\end{aligned}
$$

How it works

- For the 3rd body, for instance, it's clear x-component of acceleration is zero.
- The y-component is

$$
\begin{aligned}
\mathbf{A}_{3, y} & =-\frac{-\sin (\theta)}{4 \sin ^{3}(\theta)}-\sin (\theta)-\sin (\theta)+\frac{2 \sin (\theta)}{8 \sin ^{3}(\theta)} \\
& =-2 \sin (\theta)
\end{aligned}
$$

- Therefore

$$
\mathbf{A}_{3}=(0,-2 \sin (\theta))=2(0,-\sin (\theta))=2\left(\overline{\mathbf{q}}-\mathbf{q}_{3}\right) .
$$

How it works, cont.

- The accelerations for each of the other bodies are similar: $\mathbf{A}_{i}=2\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right)$ for each $i=1, \ldots, 4$.

How it works, cont.

- The accelerations for each of the other bodies are similar:

$$
\mathbf{A}_{i}=2\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right) \text { for each } i=1, \ldots, 4
$$

- From the symmetry of the configuration, the acceleration of the body at the origin cancels to 0 .

How it works, cont.

- The accelerations for each of the other bodies are similar:

$$
\mathbf{A}_{i}=2\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right) \text { for each } i=1, \ldots, 4
$$

- From the symmetry of the configuration, the acceleration of the body at the origin cancels to 0 .
- The c.c. equations are satisfied for each $\theta, 0<\theta<\frac{\pi}{2}$, with $\omega^{2}=2$.

How it works, cont.

- The accelerations for each of the other bodies are similar:

$$
\mathbf{A}_{i}=2\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right) \text { for each } i=1, \ldots, 4
$$

- From the symmetry of the configuration, the acceleration of the body at the origin cancels to 0 .
- The c.c. equations are satisfied for each $\theta, 0<\theta<\frac{\pi}{2}$, with $\omega^{2}=2$.
- $\overline{\mathbf{q}}$ is fixed at the origin and the distances from the 0th body are changing but the distances between consecutive vertices of the rhombus are not

How it works, cont.

- The accelerations for each of the other bodies are similar:

$$
\mathbf{A}_{i}=2\left(\overline{\mathbf{q}}-\mathbf{q}_{i}\right) \text { for each } i=1, \ldots, 4
$$

- From the symmetry of the configuration, the acceleration of the body at the origin cancels to 0 .
- The c.c. equations are satisfied for each $\theta, 0<\theta<\frac{\pi}{2}$, with $\omega^{2}=2$.
- $\overline{\mathbf{q}}$ is fixed at the origin and the distances from the 0th body are changing but the distances between consecutive vertices of the rhombus are not
- Therefore, we have found a continuum of inequivalent c.c.'s one for each θ in the interval $0<\theta<\frac{\pi}{2}$.

Rethinking Roberts

- Last summer in Hawai'i, I asked one of my REU groups to try to see whether they could find other similar examples.

Rethinking Roberts

- Last summer in Hawai'i, I asked one of my REU groups to try to see whether they could find other similar examples.
- They came up with a beautiful construction and a whole infinite family of additional examples, but only in $\mathbb{R}^{2 k}$ for $k \geq 2$.

Rethinking Roberts

- Last summer in Hawai'i, I asked one of my REU groups to try to see whether they could find other similar examples.
- They came up with a beautiful construction and a whole infinite family of additional examples, but only in $\mathbb{R}^{2 k}$ for $k \geq 2$.
- The found their examples by looking at Roberts' construction in a different way (but can also make them look similar, and that's what we'll do in this talk)

An observation

- Consider the sub-configuration $\left\{\mathbf{q}_{3}, \mathbf{q}_{0}, \mathbf{q}_{4}\right\}$, disregarding the other two bodies.

An observation

- Consider the sub-configuration $\left\{\mathbf{q}_{3}, \mathbf{q}_{0}, \mathbf{q}_{4}\right\}$, disregarding the other two bodies.
- The acceleration on body 3 due to those other two masses is:

$$
\begin{aligned}
\mathbf{A}_{3} & =\frac{m_{0}}{r_{03}^{3}}\left(\mathbf{q}_{0}-\mathbf{q}_{3}\right)+\frac{m_{4}}{r_{34}^{3}}\left(\mathbf{q}_{4}-\mathbf{q}_{3}\right) \\
& =\frac{1}{4 \sin ^{3}(\theta)}(0,-\sin (\theta))+\frac{1}{8 \sin ^{3}(\theta)}(0,2 \sin (\theta)) \\
& =\mathbf{0}
\end{aligned}
$$

An observation

- Consider the sub-configuration $\left\{\mathbf{q}_{3}, \mathbf{q}_{0}, \mathbf{q}_{4}\right\}$, disregarding the other two bodies.
- The acceleration on body 3 due to those other two masses is:

$$
\begin{aligned}
\mathbf{A}_{3} & =\frac{m_{0}}{r_{03}^{3}}\left(\mathbf{q}_{0}-\mathbf{q}_{3}\right)+\frac{m_{4}}{r_{34}^{3}}\left(\mathbf{q}_{4}-\mathbf{q}_{3}\right) \\
& =\frac{1}{4 \sin ^{3}(\theta)}(0,-\sin (\theta))+\frac{1}{8 \sin ^{3}(\theta)}(0,2 \sin (\theta)) \\
& =\mathbf{0}
\end{aligned}
$$

- $\mathbf{A}_{0}, \mathbf{A}_{4}$ in this sub-configuration also zero.

An observation

- Consider the sub-configuration $\left\{\mathbf{q}_{3}, \mathbf{q}_{0}, \mathbf{q}_{4}\right\}$, disregarding the other two bodies.
- The acceleration on body 3 due to those other two masses is:

$$
\begin{aligned}
\mathbf{A}_{3} & =\frac{m_{0}}{r_{03}^{3}}\left(\mathbf{q}_{0}-\mathbf{q}_{3}\right)+\frac{m_{4}}{r_{34}^{3}}\left(\mathbf{q}_{4}-\mathbf{q}_{3}\right) \\
& =\frac{1}{4 \sin ^{3}(\theta)}(0,-\sin (\theta))+\frac{1}{8 \sin ^{3}(\theta)}(0,2 \sin (\theta)) \\
& =\mathbf{0}
\end{aligned}
$$

- $\mathbf{A}_{0}, \mathbf{A}_{4}$ in this sub-configuration also zero.
- Similarly for other sub-configuration $\left\{\mathbf{q}_{1}, \mathbf{q}_{0}, \mathbf{q}_{2}\right\}$.

Neutral configurations

Definition 1

We will say a configuration of $\ell>1$ bodies is neutral if the gravitational acceleration on each body is zero.

Easy to see that neutral configurations are only possible if at least one mass is negative.

Other neutral configurations

- First ingredient is an "especially symmetric" central configuration.

Other neutral configurations

- First ingredient is an "especially symmetric" central configuration.
- Example - regular n-gon configurations in the $x y$-plane with positive masses $m_{i}=1$ are central.

Other neutral configurations

- First ingredient is an "especially symmetric" central configuration.
- Example - regular n-gon configurations in the $x y$-plane with positive masses $m_{i}=1$ are central.
- Place a new mass m_{0} at the center of mass \Rightarrow still central

Other neutral configurations

- First ingredient is an "especially symmetric" central configuration.
- Example - regular n-gon configurations in the $x y$-plane with positive masses $m_{i}=1$ are central.
- Place a new mass m_{0} at the center of mass \Rightarrow still central
- Can take $\mathbf{q}_{0}=(0,0)$ and

$$
\mathbf{q}_{j}=\left(\cos \left(\frac{2 \pi j}{n}\right), \sin \left(\frac{2 \pi j}{n}\right)\right)
$$

for $j=1, \ldots, n$.

Other neutral configurations

- First ingredient is an "especially symmetric" central configuration.
- Example - regular n-gon configurations in the $x y$-plane with positive masses $m_{i}=1$ are central.
- Place a new mass m_{0} at the center of mass \Rightarrow still central
- Can take $\mathbf{q}_{0}=(0,0)$ and

$$
\mathbf{q}_{j}=\left(\cos \left(\frac{2 \pi j}{n}\right), \sin \left(\frac{2 \pi j}{n}\right)\right)
$$

for $j=1, \ldots, n$.

- Because of the symmetry, \mathbf{A}_{n} has y-component $=0$ and

$$
\mathbf{A}_{n, x}=-m_{0}+\sum_{j=1}^{n-1} \frac{\cos \left(\frac{2 \pi j}{n}\right)-1}{\left(2-2 \cos \left(\frac{2 \pi j}{n}\right)\right)^{\frac{3}{2}}} .
$$

Example, cont.

- Setting this equal to zero, we can solve for m_{0} to make the acceleration on the nth body equal to 0 .

Example, cont.

- Setting this equal to zero, we can solve for m_{0} to make the acceleration on the nth body equal to 0 .
- When $n=5$, for instance, this yields

$$
m_{0}=-\frac{\sqrt{-\sqrt{5}+5} \sqrt{2}+\sqrt{\sqrt{5}+5} \sqrt{2}}{2 \sqrt{5}}
$$

and there will be an analogous m_{0} value for any other $n \geq 3$.

Example, cont.

- Setting this equal to zero, we can solve for m_{0} to make the acceleration on the nth body equal to 0 .
- When $n=5$, for instance, this yields

$$
m_{0}=-\frac{\sqrt{-\sqrt{5}+5} \sqrt{2}+\sqrt{\sqrt{5}+5} \sqrt{2}}{2 \sqrt{5}}
$$

and there will be an analogous m_{0} value for any other $n \geq 3$.

- With this m_{0}, the (n-gon) +1 configuration becomes a neutral configuration because of the rotational symmetry.

A general result

Definition 2

Abstract

A k-dimensional regular polytope configuration is a configuration \mathcal{C} of equal masses located at the vertices of a regular polytope \mathcal{P} in \mathbb{R}^{k} such that \mathcal{P} that is not contained in any hyperplane.

Theorem 3

There exists a negative mass m_{0} that, when placed at the center of mass of a regular polytope configuration \mathcal{C}, creates a neutral configuration, \mathcal{C}_{0}.

In fact m_{0} is $-\omega^{2}$ from the configuration \mathcal{P}.

A generalization

Theorem 4

Let \mathcal{C} be any union of congruent regular polytope configurations in orthogonal subspaces in \mathbb{R}^{k}, all with center of mass at the origin. There exists a negative mass which, placed at the origin, makes the configuration $\mathcal{C}_{0}=\mathcal{C} \cup\{\mathbf{0}\}$ neutral.

- Thanks to my colleague at Holy Cross, Andy Hwang, for suggesting this idea.

A generalization

Theorem 4

Let \mathcal{C} be any union of congruent regular polytope configurations in orthogonal subspaces in \mathbb{R}^{k}, all with center of mass at the origin. There exists a negative mass which, placed at the origin, makes the configuration $\mathcal{C}_{0}=\mathcal{C} \cup\{0\}$ neutral.

- Thanks to my colleague at Holy Cross, Andy Hwang, for suggesting this idea.
- Also, some experiments I have done indicate that the hypothesis of congruence is not necessary, if the masses in each regular polytope configuration can be different.

Aside on regular polytopes

There is a complete classification of the regular polytopes in \mathbb{R}^{k} up to similarity (see the classic book by Coxeter):
(1) The regular n-gons, $n \geq 3$ in \mathbb{R}^{2},

Aside on regular polytopes

There is a complete classification of the regular polytopes in \mathbb{R}^{k} up to similarity (see the classic book by Coxeter):
(1) The regular n-gons, $n \geq 3$ in \mathbb{R}^{2},
(2) The 5 Platonic solids in \mathbb{R}^{3} (tetrahedron, cube, octahedron, dodecahedron, icosahedron)

Aside on regular polytopes

There is a complete classification of the regular polytopes in \mathbb{R}^{k} up to similarity (see the classic book by Coxeter):
(1) The regular n-gons, $n \geq 3$ in \mathbb{R}^{2},
(2) The 5 Platonic solids in \mathbb{R}^{3} (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
(0) There are 6 regular polytopes in \mathbb{R}^{4}

Aside on regular polytopes

There is a complete classification of the regular polytopes in \mathbb{R}^{k} up to similarity (see the classic book by Coxeter):
(1) The regular n-gons, $n \geq 3$ in \mathbb{R}^{2},
(2) The 5 Platonic solids in \mathbb{R}^{3} (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
(3) There are 6 regular polytopes in \mathbb{R}^{4}
(1) There are 3 regular polytopes in $\mathbb{R}^{k}, k \geq 5$ (simplex, hypercube, cross-polytope)

A general construction

Definition 5

Given a configuration \mathcal{C} in \mathbb{R}^{k}, the doubling of \mathcal{C} is the parametrized family of configurations for $\theta \in\left(0, \frac{\pi}{2}\right)$ in \mathbb{R} defined by:

$$
\begin{aligned}
\mathcal{D}_{\theta}(\mathcal{C})= & \left\{(\cos (\theta) \mathbf{q}, \mathbf{0}) \in \mathbb{R}^{2 k}: \mathbf{q} \in \mathcal{C}\right\} \\
& \cup\left\{(\mathbf{0}, \mathbf{0}) \in \mathbb{R}^{2 k}\right\} \\
& \cup\left\{(\mathbf{0}, \sin (\theta) \mathbf{q}) \in \mathbb{R}^{2 k}: \mathbf{q} \in \mathcal{C}\right\}
\end{aligned}
$$

How we apply this

Consider this situation:
(1) \mathcal{C} is a k-dimensional regular polytope configuration, with $n=$ number of vertices of the polytope, vertices \mathbf{q}_{i} with $\left\|\mathbf{q}_{i}\right\|=1$, all i (or one of the more general configurations from Theorem 4, with $n=$ total number of vertices), all masses $=1$

How we apply this

Consider this situation:
(1) \mathcal{C} is a k-dimensional regular polytope configuration, with $n=$ number of vertices of the polytope, vertices \mathbf{q}_{i} with $\left\|\mathbf{q}_{i}\right\|=1$, all i (or one of the more general configurations from Theorem 4, with $n=$ total number of vertices), all masses $=1$
(2) $\mathcal{C}_{0}=\mathcal{C} \cup\{\mathbf{0}\}$ is an associated neutral configuration, and

How we apply this

Consider this situation:
(1) \mathcal{C} is a k-dimensional regular polytope configuration, with $n=$ number of vertices of the polytope, vertices \mathbf{q}_{i} with $\left\|\mathbf{q}_{i}\right\|=1$, all i (or one of the more general configurations from Theorem 4, with $n=$ total number of vertices), all masses $=1$
(2) $\mathcal{C}_{0}=\mathcal{C} \cup\{\mathbf{0}\}$ is an associated neutral configuration, and
(3) The $\mathcal{D}_{\theta}(\mathcal{C})$ are $(2 n+1)$-body configurations, with all masses $=1$ except for the central negative mass

The theorem

Theorem 6

Let \mathcal{C} be a k-dimensional regular polytope configuration, or one of the more general "product regular polytope configurations" given in Theorem 4 in \mathbb{R}^{k}. Let n be the number of bodies in \mathcal{C}. Let \mathcal{C}_{0} be the associated neutral configuration. Then for each $\theta \in\left(0, \frac{\pi}{2}\right), \mathcal{D}_{\theta}(\mathcal{C})$ is a central configuration with $\omega^{2}=n$.

Corollary 7

The family $\mathcal{D}_{\theta}(\mathcal{C})$ is a continuum of inequivalent central configurations in $\mathbb{R}^{2 k}$, all with the same masses.

Idea of proof

- The proof is a direct check that the c.c. conditions are satisfied for each body in the doubled configuration.
- Symmetry is used in a crucial way to simplify the calculations
- What really makes this work is that the orthogonality of the two copies of \mathbb{R}^{k} implies

$$
\left\|\left(\cos (\theta) \mathbf{q}_{i}, \mathbf{0}\right)-\left(\mathbf{0}, \sin (\theta) \mathbf{q}_{j}\right)\right\|=\sqrt{\cos ^{2}(\theta)+\sin ^{2}(\theta)}=1
$$

for all i, j.

Comments

- As before, it is easy to see that $\mathcal{D}_{\theta_{1}}(\mathcal{C})$ and $\mathcal{D}_{\theta_{2}}(\mathcal{C})$ are not equivalent if $0<\theta_{1}<\theta_{2}<\frac{\pi}{2}$.

Comments

- As before, it is easy to see that $\mathcal{D}_{\theta_{1}}(\mathcal{C})$ and $\mathcal{D}_{\theta_{2}}(\mathcal{C})$ are not equivalent if $0<\theta_{1}<\theta_{2}<\frac{\pi}{2}$.
- In our paper, we write the continuum using a different parametrization for the doubling construction that fixes the first copy and makes $\omega^{2}=\frac{n}{\left(1+t^{2}\right)^{3 / 2}}$. Equivalent to what we said here, though.

Mahalo for your attention!

