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Central Configurations

We will focus on central configurations (“c.c.’s”) in the
Newtonian n-body problem

A c.c. (with center of mass at q) is a configuration such
that the acceleration vector of each body is proportional to
the displacement vector from center of mass, all with the
same proportionality constant. That is,
(Setting G = 1 and writing qi for location of i th body):

Ai =
∑
j 6=i

mj(qj − qi)

r3
ij

= ω2(q− qi)
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The big problem

A major question here is: Given n masses m1, . . . ,mn, at
how many different locations can these be placed to get
central configurations? (Usually in R2 or R3, but makes
sense mathematically in higher dimensions too.)

Can translate, rotate, and scale c.c.’s and the results are
again c.c.’s
Convention: Two c.c.’s are equivalent if one can be taken
into the other by a composition of a rigid motion
(translation, rotation) and a scaling in Rk

More precise form of question: Is the set of equivalence
classes of (planar, or ... ) central configurations finite? On
Smale’s 21st century problem list.
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Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)

Yes for collinear configurations, all n (Moulton)
Yes for n = 4 (Hampton and Moeckel)
Quite strong results for n = 5 (Albouy and Kaloshin)
Only fairly limited special cases known in general
Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)
Yes for collinear configurations, all n (Moulton)

Yes for n = 4 (Hampton and Moeckel)
Quite strong results for n = 5 (Albouy and Kaloshin)
Only fairly limited special cases known in general
Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)
Yes for collinear configurations, all n (Moulton)
Yes for n = 4 (Hampton and Moeckel)

Quite strong results for n = 5 (Albouy and Kaloshin)
Only fairly limited special cases known in general
Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)
Yes for collinear configurations, all n (Moulton)
Yes for n = 4 (Hampton and Moeckel)
Quite strong results for n = 5 (Albouy and Kaloshin)

Only fairly limited special cases known in general
Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)
Yes for collinear configurations, all n (Moulton)
Yes for n = 4 (Hampton and Moeckel)
Quite strong results for n = 5 (Albouy and Kaloshin)
Only fairly limited special cases known in general

Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Status of the “big problem”

Yes for n = 3 (Euler, Lagrange)
Yes for collinear configurations, all n (Moulton)
Yes for n = 4 (Hampton and Moeckel)
Quite strong results for n = 5 (Albouy and Kaloshin)
Only fairly limited special cases known in general
Question is subtle algebraically. For instance, by work of
Gareth Roberts (Physica D 127 (1999), 141-145), there
collections of n = 5 masses, one negative, for which there
is a curve of equivalence classes of c.c.’s (a “continuum”)

John B. Little Continua of Central Configurations



Background
The Roberts Example

PURE Math 2012 Group 2’s Work
Doubling

Geometry of Roberts’ “rhombus +1”

Choose coordinates so

q0 = (0,0),q1 = (cos(t),0) = −q2,q3 = (0, sin(t)) = −q4.

Let mi = 1 for i = 1, . . . ,4, and m0 = −1
4 .

The center of mass of the configuration, q, is located at the
origin.
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Roberts’ “rhombus +1”

Figure: Rhombus with Roberts’ parametrization
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How it works

For the 3rd body, for instance, it’s clear x-component of
acceleration is zero.

The y -component is

A3,y = −− sin(θ)
4 sin3(θ)

− sin(θ)− sin(θ) +
2 sin(θ)
8 sin3(θ)

= −2 sin(θ).

Therefore

A3 = (0,−2 sin(θ)) = 2(0,− sin(θ)) = 2(q− q3).
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How it works, cont.

The accelerations for each of the other bodies are similar:
Ai = 2(q− qi) for each i = 1, . . . ,4.

From the symmetry of the configuration, the acceleration of
the body at the origin cancels to 0.
The c.c. equations are satisfied for each θ, 0 < θ < π

2 , with
ω2 = 2.
q is fixed at the origin and the distances from the 0th body
are changing but the distances between consecutive
vertices of the rhombus are not
Therefore, we have found a continuum of inequivalent c.c.’s
one for each θ in the interval 0 < θ < π

2 .
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Rethinking Roberts

Last summer in Hawai’i, I asked one of my REU groups to
try to see whether they could find other similar examples.

They came up with a beautiful construction and a whole
infinite family of additional examples, but only in R2k for
k ≥ 2.
The found their examples by looking at Roberts’
construction in a different way (but can also make them
look similar, and that’s what we’ll do in this talk)
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An observation

Consider the sub-configuration {q3,q0,q4}, disregarding
the other two bodies.

The acceleration on body 3 due to those other two masses
is:

A3 =
m0

r3
03

(q0 − q3) +
m4

r3
34

(q4 − q3)

=
1

4 sin3(θ)
(0,− sin(θ)) +

1
8 sin3(θ)

(0,2 sin(θ))

= 0

A0, A4 in this sub-configuration also zero.
Similarly for other sub-configuration {q1,q0,q2}.
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Neutral configurations

Definition 1

We will say a configuration of ` > 1 bodies is neutral if the
gravitational acceleration on each body is zero.

Easy to see that neutral configurations are only possible if at
least one mass is negative.
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Other neutral configurations

First ingredient is an “especially symmetric” central
configuration.

Example – regular n-gon configurations in the xy -plane
with positive masses mi = 1 are central.
Place a new mass m0 at the center of mass⇒ still central
Can take q0 = (0,0) and

qj =

(
cos

(
2πj
n

)
, sin

(
2πj
n

))
for j = 1, . . . ,n.
Because of the symmetry, An has y -component = 0 and

An,x = −m0 +
n−1∑
j=1

cos(2πj
n )− 1

(2− 2 cos(2πj
n ))

3
2

.
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Example, cont.

Setting this equal to zero, we can solve for m0 to make the
acceleration on the nth body equal to 0.

When n = 5, for instance, this yields

m0 = −
√
−
√

5 + 5
√

2 +
√√

5 + 5
√

2
2
√

5
,

and there will be an analogous m0 value for any other
n ≥ 3.
With this m0, the (n-gon)+1 configuration becomes a
neutral configuration because of the rotational symmetry.
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A general result

Definition 2
A k -dimensional regular polytope configuration is a
configuration C of equal masses located at the vertices of a
regular polytope P in Rk such that P that is not contained in
any hyperplane.

Theorem 3
There exists a negative mass m0 that, when placed at the
center of mass of a regular polytope configuration C, creates a
neutral configuration, C0.

In fact m0 is −ω2 from the configuration P.
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A generalization

Theorem 4
Let C be any union of congruent regular polytope configurations
in orthogonal subspaces in Rk , all with center of mass at the
origin. There exists a negative mass which, placed at the origin,
makes the configuration C0 = C ∪ {0} neutral.

Thanks to my colleague at Holy Cross, Andy Hwang, for
suggesting this idea.

Also, some experiments I have done indicate that the
hypothesis of congruence is not necessary, if the masses
in each regular polytope configuration can be different.
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Aside on regular polytopes

There is a complete classification of the regular polytopes in Rk

up to similarity (see the classic book by Coxeter):
1 The regular n-gons, n ≥ 3 in R2,

2 The 5 Platonic solids in R3 (tetrahedron, cube, octahedron,
dodecahedron, icosahedron)

3 There are 6 regular polytopes in R4

4 There are 3 regular polytopes in Rk , k ≥ 5 (simplex,
hypercube, cross-polytope)
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A general construction

Definition 5

Given a configuration C in Rk , the doubling of C is the
parametrized family of configurations for θ ∈ (0, π2 ) in R defined
by:

Dθ(C) = {(cos(θ)q,0) ∈ R2k : q ∈ C}
∪ {(0,0) ∈ R2k}
∪ {(0, sin(θ)q) ∈ R2k : q ∈ C}.
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How we apply this

Consider this situation:
1 C is a k -dimensional regular polytope configuration, with

n = number of vertices of the polytope, vertices qi with
‖qi‖ = 1, all i (or one of the more general configurations
from Theorem 4, with n = total number of vertices), all
masses = 1

2 C0 = C ∪ {0} is an associated neutral configuration, and
3 The Dθ(C) are (2n + 1)-body configurations, with all

masses = 1 except for the central negative mass
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The theorem

Theorem 6
Let C be a k-dimensional regular polytope configuration, or one
of the more general “product regular polytope configurations”
given in Theorem 4 in Rk . Let n be the number of bodies in C.
Let C0 be the associated neutral configuration. Then for each
θ ∈ (0, π2 ), Dθ(C) is a central configuration with ω2 = n.

Corollary 7

The family Dθ(C) is a continuum of inequivalent central
configurations in R2k , all with the same masses.
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Idea of proof

The proof is a direct check that the c.c. conditions are
satisfied for each body in the doubled configuration.
Symmetry is used in a crucial way to simplify the
calculations
What really makes this work is that the orthogonality of the
two copies of Rk implies

‖(cos(θ)qi ,0)− (0, sin(θ)qj)‖ =
√

cos2(θ) + sin2(θ) = 1

for all i , j .
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Comments

As before, it is easy to see that Dθ1(C) and Dθ2(C) are not
equivalent if 0 < θ1 < θ2 <

π
2 .

In our paper, we write the continuum using a different
parametrization for the doubling construction that fixes the
first copy and makes ω2 = n

(1+t2)3/2 . Equivalent to what we
said here, though.
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Mahalo for your attention!
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