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¢l. Some motivation

e [0 uUse a code in practice, must have effi-
cient encoding and decoding algorithms.

e For encoding a linear block code, knowing
a generator matrix suffices.

e But for “large” codes (large n and k, over
large fields), a full generator matrix G can
require a large amount of storage space.

e Can we do better?



Cyclic codes

e When our code has some additional struc-
ture, often, yes.

e Say C is cyclic of block-length n over Fq
(key example — the Reed-Solomon codes
RS(k,q) with n=¢ —1).

e Standard fact: Representing code words as
polynomials modulo x™"—1, C can be viewed
as an ideal C C Fy[z]/(z™ — 1).

e PID property of Fy[z] = C is generated by
some g(x) of degree < n — 1.

e & (' has a generator matrix G whose rows
are all cyclic shifts of the vector of coeffi-
cients of g(x), so we can replace full G by
one of its rows without loss of information.

3



Cyclic codes, continued

e [0 encode in this setting, we can use the
following procedure: Information positions

are the coefficients of t»~% ... z"~1 and
the parity checks are the coefficients of
1. 2,..., " k1

Input: ¢g(xz), generator poly for C
information symbols ¢,,_,...,c,_1
Output: y, a codeword

pi=cppgz" F 4 gzl

y = p— Rem(p, g,x);

e As usual, p—Rem(p, g, x) is divisible by g(x),
hence an element of the ideal C.

e Since g has degree n — k, Rem(p, g,x) con-
tains only terms in 1,z,...,z" %=1 The
other terms will be the same as in p = this
IS a ‘“‘systematic” encoding method.



§2. Automorphisms and module
structures

Generalizing the cyclic case, consider any linear
block code C with a cyclic group G = (o) of
automorphisms (C is “quasicyclic’).

e Let O;, + = 1,...,r be the orbits of the
components of codewords under o.

e For example, if n = 8, and o = right cyclic
shift by two positions:

o:(x1,r2,23...,28) — (v7,23,21,...,%6)

IS an automorphism of a code, then there
are two orbits. O1 = the odd-numbered
positions and O, = the even-numbered po-
sitions.

e By general facts on group actions, |O;| | |G|
all 2.



The module structure

e Pick any z; g in «th orbit and relabel the or-
bit as i gy 7 =0,..., |Oi|—1, where O'(:Ui,j) =

L5 5+1 mod |0,

e Construct ¢ : C — Fy[t]" by

r |0;]—1 .
(ij)—= > (> ziit!)e,
i=1 =0

e For example if x € C, n = 8 which has
o — double right cyclic shift as an auto-
morphism, taking 1.0 = *1 and T2 0 = T2,
we have

o(z) = (z1+ 23t + 25t + w7t
T5 + zat + z6t° + T5tY)



The module structure, contin-
ued

e ©(C) is closed under sums if C is linear.

e t-o(z), followed by “division by /9 — 1 in
the ith component,” gives ¢(o(x)).

e In example,

t-p(z) = (z1t4+ -+ 27t 2ot + - - + 25t
= (w74 +ast>, 25+ + w6t°)
= ¢(a(z))

o Letm:Fy[t]" — Fy[t]" /O, where O = ((¢l9il -
1)e; :i=1,...,r). Then ©w(p(C)) is closed
under multiplication by ¢, hence by any poly-
nomial.



Formal statement
We have sketched the proof of:

Theorem 1 Any linear block code C over Fq
with a cyclic group G of automorphisms has
the structure of a module over the ring Fq[t]
(a submodule of

Fy[t]" /(O —1)e; i =1,...,7),
where r,O; as above).
(Can also be generalized to non-cyclic groups
(G; the corresponding statement is that the

code can be viewed as a submodule of a free
module over the group algebra Fy[G].)

We'll see some interesting examples later.



§3. Grobner bases for modules

e A useful tool for studying these module
structures on codes is provided by the the-
ory of Grobner bases for modules over poly-
nomial rings S — theory for ideals can be
seen as a special case.

e We will only use the case of S = [ [t] which
IS somewhat simpler: consult references for
general theory.

e A monomial m in M = Fq[t]" is an element
of the form m = t'e;, where e; is the jth
standard basis vector in M.

e A monomial ordering is a total ordering >
on the collection of monomials that satis-
fies t'e; > e; for all j and all ¢ > 0, and
IS compatible with the module structure:

my > mo = ttmy > t'mo, all i.



Some examples of monomial or-
ders

e First order the €; themselves; we'll use

€1 >€er > - > €er

(opposite is also possible and is used too0).

e The position over term (or POT') ordering
on [Fg[t]":

' k
tzej >porT tey

if 9 <¥¢, or j =/ and 7 > k.

e The term over position (or TOP) ordering
on [Fg[t]":

tzej >TOP tkeg

if ¢+ >k, orte =k and 5 < /.
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Another example

In his Grobner basis description of Reed-Solomon
decoding algorithms, Fitzpatrick uses another
order >s on Fy[t]°. Pick s € Z. Then >4 is
defined by t'e; >, the, if j = £ and i > k and
t'er >3 theq if i +s > k (and opposite order if
not).

For instance, with s = 3:

e1 <3z teq <3 t2€1 < t3e1 <3 ep <3 t4e1 <3...

(Whether e; >5 e, Or e; <5 e, depends on sign
of s € Z here.)
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“Grobner basics”

e Given a monomial order >, every f € Fy[t]"
has a unique leading term LT~ (f).

e There is a division, or normal form algo-
rithm generalizing the algorithm for poly-
nomials.

e For any nonzero submodule M C Fq[t]",
have LT~ (M), the submodule generated by
all leading terms of elements of M.

e A GrObner basis G for M w.r.t. > is a set
G C M such that the LT (g) for g € G gen-
erate the leading term submodule LT~ (M).

e Have general Buchberger algorithm for com-
puting Grobner bases in this setting.
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Grobner basis of a code

Given a code C as in Prop 1, we consider the
corresponding submodule of Fgy[t]", that is the
submodule

M(C) = (p(C)) + ((#19 —1)e; :i=1,...,7)

A Grobner basis for M (C) will be called a Grobner
basis for the code.

“Toy example”: Consider the code C over [y
with generator matrix

1 0 0 0 1 0O 0 O
G=|0 0 1 0O O O 1 O
c 1 0 1 0 1 0 1

Note C is closed under o = right double cyclic
shift.
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“Toy example,” continued

e With orbits O1,05 as before, the rows of
G correspond to module elements

g1 = (1+t2eq,
g = (t+t3)e; =tg1,
g3 = (14+t+t2+t3)es.

o M(C) = (91,92, 93)+((t*+1)er, (t*+1)e2).

e With respect to POT order, G = {g1,93}
is a Grobner basis of C, since (t* 4+ 1)e; =

(t?> + 1)g1 and (t* 4+ 1)eo = (¢t + 1)gs.
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Grobner basis encoding

When Proposition 1 holds, can use a Grobner
basis G for C (any monomial order) to encode:

e Information positions are the coefficients
of the non-standard monomials (i.e. el-
ements of LT~ (M(C)) of form tle; with
73 <10;/—1)

e Parity check positions are the standard mono-
mials (i.e. in complement of LT~ (M ((C)))

e [0 encode a word ¢, form the linear com-
bination f = > ¢;m; (m; the non-standard
monomials), then

e Compute z = f — fY (where FY is the re-
mainder on division by G.

e = xc M(C).
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4. AG Goppa codes and codes
rom order domains

Our general constructions apply to many in-
teresting codes, e.g. some AG Goppa codes.

e Start with a smooth projective algebraic
curve X C P" defined over F; (preferably
with “many"” Fg-rational points).

e let G and D = P; + ...+ P, be effective
divisors on X, sums of [4-rational points,
w/ disjoint supports. Take L(G) = {f €
Fe(X) : (f) +G >0} u{o}.

e Define

ev: L(G) — Ky
fo= (f(PL),..., f(Pn))

Let C = Cr(D,G) = im(ev) C Fy.
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bservations

Can take G = m(@ and D = sum of all other
Fq-rational points to maximize |G| (gives
the class of “one-point Goppa codes’ )

Many interesting curves that have lots of
Fg-rational points also have many automor-
phisms fixing G = m@ and D.

Any such automorphism induces an auto-
morphism of the code Cp(D,mQ).

We can take ¢ = any such automorphism
and use G = (o).

=- such codes have Fy[t]-module structures,
and Grobner basis encoding.
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Hermitian curve codes
e Let o be a primitive element of Fqg.

e Consider the Hermitian curve over Fqg —
H=V(X1tl_vyiz —yz9) c P2,

e H has ¢34 1 F,-rational points: ¢3 affine
points: g on each line X =c¢Z and Q = (0 :
1:0) at infinity.

e [ his is the maximum possible for a curve
of genus g = q(q — 1)/2 over Fqg, by the

Hasse-Weil bound: [C(F )| < 14 g2+ 2¢g.

eletoc: (X :Y:2)w— (aX : oty : 2)
then o is an auto. of H fixing  and per-
muting the ¢3 affine F >-rational points. =
Can apply the construction above.
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The Hermitian curve over Fyq

Yy

o’ ° ° °
o ° ° °
le

‘o

19



Cr(D,m@Q)'s module structure

o: (X :Y :Z)— (X Y : Z) permutes
the affine F4-rational points in 4 orbits, two of
length 3, and two of length 1:

S
|

{(1:a:1),(a:a:1),(a2:a:1)}
Or = {(1:a2:1),(a:a2:1),(a2:a2:1)}
O3 = {(0:0:1)}

{(0:a:1)}

Q)
N
|

Similar patterns for any Fqg: Under o there

are g orbits of length ¢2 — 1 (all coordinates
nonzero), one of length ¢ —1 (X =0, Y # 0),
and one of length 1 ({(0:0:1)})
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The code Cy(D,3 )

The affine coordinate functions z = X/Z and
y=Y/Z are elements of L(3Q), asisl1 =7/7.
Hence, if we order the F4-rational points on H
in one particular way, the code C(D,3Q) is
the span of the rows of the matrix:

Can be seen that this code has parameters
[n, k,d] = [8,3,5] over F4, (best possible for this
n, k).
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Grobner basis

The reduced POT Grobner basis for the cor-
responding submodule of F4[t]* is:

(t+ a,t + o, a?,a?)

g1 —

g = (0,2 +t+1,0,0°)
g3 — (0,0,t—l,O)

g4 — (0,0,0,t—l)

e Information positions: t2eqy, tey, t2es.

e Parity checks: e ,teo, €5, €3, ey.
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rder functions
Hgholdt, van Lint, and Pellikaan (building on a
lot of previous work) introduced the following
idea:

Def. Let R be a Fj-algebra. Let (I',+,<)
be a well-ordered semigroup. An order, or
weight, function is a surjective mapping p
R — {—o0} UT satisfying:

1. p(f) = —oc0 & f=0
2. p(ef) = p(f) for all f € R, all ¢c#0in Ty,
3. p(f 4+ g9) 2 max<{p(f),p(9)}

4. if p(f) = p(g) # —oo, then 3 ¢ # 0 in [y
such that p(f —cg) < p(f)

5. p(fg) = p(f) + p(g)
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First properties

e AXioms 1 and 5 imply that R must be a
domain; a ring with an order function is
called an order domain.

o Let K = QF(R).

e From now on, restrict to case I a sub-
semigroup of Z’“>O, some r > 1, so finitely
generated.

e Then WLOG, may assume r = tfr.deg.]Fq(K).

e “order” refers to the ordered F, basis of R
with distinct p-values guaranteed by axiom
4
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Examples

e Let X be a smooth curve, Q € X. R =
L(ocoQ) is an order domain with ' = Weier-
strass semigroup of X at Q, p(f) = —vg(f),
i.e. the pole order at Q. (Goppa)

e R="[Fy[Xq,...,X,] is an order domain tak-
ing I = Z%,, < a monomial order, p(f) = «
if LT<(f) = X for f % 0. (Reed-Muller)

e Many other ways to produce order domains
from virtually any algebraic variety (of dim
> 1), connections with theory of valuations
on function fields.

e Can also construct order domains with a
given I.
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Examples, continued

Consider ' = ((0,2),(1,1),(3,0)) C Z%o

3 generators for [ = a surjective ring ho-
momorphism:

¢ Fq[X,Y,Z] - R,

where ¢(X) = z, etc. and p(x) = (0, 2),
p(y) = (1,1), p(2) = (3,0).

All relations between p(x), p(y),p(z) gen-
erated by p(z322) = p(y®)

Must have p(y® — cz322) < p(y®) for some
c#0. = R=TFy,[X,Y,Z]/I, where I = (F),

F=Y%_¢x372 + lower order terms
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An extrinsic characterization

Can check all such R are order domains (and all
deformations of the monomial algebra Fy[l"] =
F,[v2, uv,ud] &2 Fy[X,Y,Z]/(Y® — X3Z2)). In
general,

Theorem 2 (Geil-Pellikaan) Let R be an order
domain with a given finitely-generated value
semigroup I C Z7“>O. L et

Rr = Fy[ 2 Fy[ X, ..., Xs/Ir

be the “toric” algebra associated to " (I is a
toric ideal — generated by differences of mono-
mials). Then R has a flat deformation to Rf
coming from a presentation of R similar to our
last example above.
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Codes from order domains
To construct codes from an order domain R =

Fq[X1,...,Xs]/1, generalize Goppa's construc-
tion:

e Let A be the ordered basis of R (ordered
by p value) given by the monomials in com-
plement of LT~ (1)

o Let Xp=V({), and Xr(Fy) ={P1,...,Pn}
be the set of Fy-rational points on Xp

o Let V, be the span of the first ¢ elements
of A

e Letev: R—F ev(f) = (F(PL),. .., f(Pn))

e Get codes E; = ev(V,), Cy = Evj.
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Final example — Hermitian sur-
face codes

e Consider the Hermitian surface:
H=v(xIT! 4 x0T 4 xgtl _ xatl
in P3 over the field Fo.

e H has (¢ +1)(¢3+1) F >-rational points.

e Can introduce a linear change of coordi-
nates to put a tangent plane to the surface
as the plane at infinity.

e A tangent plane meets H in reducible curve
made up of ¢ + 1 concurrent lines.

e = affine surface is #' = V(X9+1 4 yat+l_
Z9— Z), and has ¢° F »-rational points.
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Hermitian surface codes

e Can check the affine coordinate ring also
has an order domain structure.

e Have many automorphisms, e.g.

o (X,Y,2) — (aX,aY,adT12)
(order = ¢2 — 1)

e o fixes plane at infinity and permutes the
g° affine F »-rational points on the surface

in g3 + g orbits of size g2 — 1, one of size
q — 1, and one of size 1.

e Could also use

7 (X,Y,2) — (aY,aX,a?T2)
(higher order if g even).
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Hermitian surface codes, contin-
ued

e For instance, the code from the Hermitian
surface over [f4 constructed by evaluating
1,X,Y,Z has [n,k,d] = [32,4,22]

e Minimum weight codeword comes by eval-
uating a linear polynomial which defines
the tangent plane at one of the Fqg—rational
points on the surface.

e Equals best possible n = 32, £k = 4 code
over 4 (Brouwer's table).

e But also have Grobner basis encoding, good
decoding, etc. for this code because of the
extra structure(!)
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Comment

e Ironically, when order domains were intro-
duced by Hgholdt, van Lint, and Pellikaan,
their goal was to ‘“take the (hard) alge-
braic geometry out of the theory of Goppa
codes” (1)

e As it turns out, their synthesis of that the-
ory has made it possible to use even more
commutative algebra and algebraic geome-
try to construct new examples of error con-
trol codes, generalize the existing decoding
algorithms, etc.
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