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Outline of talk
� Motivation; polynomial division enodingfor yli odes
� Automorphisms)module (quasi-yli) stru-tures
� Gr�obner bases for modules
� Evaluation odes from order domains (in-luding AG Goppa odes)
� Examples
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x1. Some motivation
� To use a ode in pratie, must have eÆ-ient enoding and deoding algorithms.
� For enoding a linear blok ode, knowinga generator matrix suÆes.
� But for \large" odes (large n and k, overlarge �elds), a full generator matrix G anrequire a large amount of storage spae.
� Can we do better?
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Cyli odes
� When our ode has some additional stru-ture, often, yes.
� Say C is yli of blok-length n over Fq(key example { the Reed-Solomon odesRS(k; q) with n= q � 1).
� Standard fat: Representing ode words aspolynomials modulo xn�1, C an be viewedas an ideal C � Fq[x℄=hxn � 1i.
� PID property of Fq[x℄ ) C is generated bysome g(x) of degree � n� 1.
� , C has a generator matrix G whose rowsare all yli shifts of the vetor of oeÆ-ients of g(x), so we an replae full G byone of its rows without loss of information.3



Cyli odes, ontinued
� To enode in this setting, we an use thefollowing proedure: Information positionsare the oeÆients of tn�k; : : : ; xn�1, andthe parity heks are the oeÆients of1; x; : : : ; xn�k�1.Input: g(x), generator poly for Cinformation symbols n�k; : : : ; n�1Output: y, a odewordp := n�kxn�k + � � �+ n�1xn�1;y := p�Rem(p; g; x);
� As usual, p�Rem(p; g; x) is divisible by g(x),hene an element of the ideal C.
� Sine g has degree n� k, Rem(p; g; x) on-tains only terms in 1; x; : : : ; xn�k�1. Theother terms will be the same as in p ) thisis a \systemati" enoding method. 4



x2. Automorphisms and modulestruturesGeneralizing the yli ase, onsider any linearblok ode C with a yli group G = h�i ofautomorphisms (C is \quasiyli").
� Let Oi, i = 1; : : : ; r be the orbits of theomponents of odewords under �.
� For example, if n = 8, and � = right ylishift by two positions:� : (x1; x2; x3 : : : ; x8) 7! (x7; x8; x1; : : : ; x6)is an automorphism of a ode, then thereare two orbits: O1 = the odd-numberedpositions and O2 = the even-numbered po-sitions.
� By general fats on group ations, jOij j jGjall i. 5



The module struture
� Pik any xi;0 in ith orbit and relabel the or-bit as xi;j, j = 0; : : : ; jOij�1, where �(xi;j) =xi;j+1 mod jOij.
� Construt ' : C ! Fq[t℄r by(xi;j) 7! rXi=1(jOij�1Xj=0 xi;jtj)ei
� For example if x 2 C, n = 8 whih has� = double right yli shift as an auto-morphism, taking x1;0 = x1 and x2;0 = x2,we have�(x) = (x1+ x3t+ x5t2+ x7t3;x2+ x4t+ x6t2+ x8t3) 6



The module struture, ontin-ued
� '(C) is losed under sums if C is linear.
� t � '(x), followed by \division by tjOij� 1 inthe ith omponent," gives '(�(x)).
� In example,t � '(x) = (x1t+ � � �+ x7t4; x2t+ � � �+ x8t4)� (x7+ � � �+ x5t3; x8+ � � �+ x6t3)= '(�(x))
� Let � : Fq[t℄r ! Fq[t℄r=O, where O = h(tjOij�1)ei : i = 1; : : : ; ri. Then �('(C)) is losedunder multipliation by t, hene by any poly-nomial. 7



Formal statementWe have skethed the proof of:Theorem 1 Any linear blok ode C over Fqwith a yli group G of automorphisms hasthe struture of a module over the ring F q[t℄(a submodule ofFq[t℄r=h(tjOij � 1)ei : i = 1; : : : ; ri;where r;Oi as above).(Can also be generalized to non-yli groupsG; the orresponding statement is that theode an be viewed as a submodule of a freemodule over the group algebra Fq[G℄.)We'll see some interesting examples later.
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x3. Gr�obner bases for modules
� A useful tool for studying these modulestrutures on odes is provided by the the-ory of Gr�obner bases for modules over poly-nomial rings S { theory for ideals an beseen as a speial ase.
� We will only use the ase of S = Fq[t℄ whihis somewhat simpler; onsult referenes forgeneral theory.
� A monomial m in M = Fq[t℄r is an elementof the form m = tiej, where ej is the jthstandard basis vetor in M .
� A monomial ordering is a total ordering >on the olletion of monomials that satis-�es tiej > ej for all j and all i > 0, andis ompatible with the module struture:m1 > m2 ) tim1 > tim2, all i. 9



Some examples of monomial or-ders
� First order the ej themselves; we'll usee1 > e2 > � � � > er(opposite is also possible and is used too).
� The position over term (or POT) orderingon Fq[t℄r: tiej >POT tke`if j < `, or j = ` and i > k.
� The term over position (or TOP) orderingon Fq[t℄r: tiej >TOP tke`if i > k, or i= k and j < `. 10



Another exampleIn his Gr�obner basis desription of Reed-Solomondeoding algorithms, Fitzpatrik uses anotherorder >s on Fq[t℄2. Pik s 2 Z. Then >s isde�ned by tiej >s tke` if j = ` and i > k andtie2 >3 tke1 if i+ s � k (and opposite order ifnot).For instane, with s = 3:e1 <3 te1 <3 t2e1 < t3e1 <3 e2 <3 t4e1 <3 : : :
(Whether e1 >s e2 or e1 <s e2 depends on signof s 2 Z here.)
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\Gr�obner basis"
� Given a monomial order >, every f 2 Fq[t℄rhas a unique leading term LT>(f).
� There is a division, or normal form algo-rithm generalizing the algorithm for poly-nomials.
� For any nonzero submodule M � Fq[t℄r,have LT>(M), the submodule generated byall leading terms of elements of M .
� A Gr�obner basis G for M w.r.t. > is a setG �M suh that the LT>(g) for g 2 G gen-erate the leading term submodule LT>(M).
� Have general Buhberger algorithm for om-puting Gr�obner bases in this setting. 12



Gr�obner basis of a odeGiven a ode C as in Prop 1, we onsider theorresponding submodule of Fq[t℄r, that is thesubmoduleM(C) = h'(C)i+ h(tjOij � 1)ei : i= 1; : : : ; ri
A Gr�obner basis forM(C) will be alled a Gr�obnerbasis for the ode.\Toy example": Consider the ode C over F2with generator matrix

G = 0B�1 0 0 0 1 0 0 00 0 1 0 0 0 1 00 1 0 1 0 1 0 1
1CANote C is losed under � = right double ylishift.
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\Toy example," ontinued
� With orbits O1; O2 as before, the rows ofG orrespond to module elementsg1 = (1+ t2)e1;g2 = (t+ t3)e1 = tg1;g3 = (1+ t+ t2+ t3)e2:
� M(C) = hg1; g2; g3i+h(t4+1)e1; (t4+1)e2i.
� With respet to POT order, G = fg1; g3gis a Gr�obner basis of C, sine (t4+1)e1 =(t2+1)g1 and (t4+1)e2 = (t+1)g3.
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Gr�obner basis enodingWhen Proposition 1 holds, an use a Gr�obnerbasis G for C (any monomial order) to enode:
� Information positions are the oeÆientsof the non-standard monomials (i.e. el-ements of LT>(M(C)) of form tjei withj � jOij � 1)
� Parity hek positions are the standard mono-mials (i.e. in omplement of LT>(M(C)))
� To enode a word , form the linear om-bination f = P imi (mi the non-standardmonomials), then
� Compute x = f � fG (where fG is the re-mainder on division by G.
� ) x 2M(C). 15



x4. AG Goppa odes and odesfrom order domainsOur general onstrutions apply to many in-teresting odes, e.g. some AG Goppa odes.
� Start with a smooth projetive algebraiurve X � Pn de�ned over Fq (preferablywith \many" Fq-rational points).
� Let G and D = P1 + : : :+ Pn be e�etivedivisors on X, sums of Fq-rational points,w/ disjoint supports. Take L(G) = ff 2Fq(X) : (f) +G � 0g [ f0g.
� De�neev : L(G) ! Fnqf 7! (f(P1); : : : ; f(Pn))Let C = CL(D;G) = im(ev) � Fnq . 16



Observations
� Can take G= mQ and D = sum of all otherFq-rational points to maximize jGj (givesthe lass of \one-point Goppa odes")
� Many interesting urves that have lots ofFq-rational points also have many automor-phisms �xing G = mQ and D.
� Any suh automorphism indues an auto-morphism of the ode CL(D;mQ).
� We an take � = any suh automorphismand use G= h�i.
� ) suh odes have F q[t℄-module strutures,and Gr�obner basis enoding. 17



Hermitian urve odes
� Let � be a primitive element of Fq2.� Consider the Hermitian urve over Fq2 {H = V (Xq+1 � Y qZ � Y Zq) � P2.
� H has q3 + 1 Fq-rational points: q3 aÆnepoints: q on eah line X = Z and Q = (0 :1 : 0) at in�nity.
� This is the maximum possible for a urveof genus g = q(q � 1)=2 over Fq2, by theHasse-Weil bound: jC(Fq2)j � 1+ q2+2gq:
� Let � : (X : Y : Z) 7! (�X : �q+1Y : Z),then � is an auto. of H �xing Q and per-muting the q3 aÆne Fq2-rational points. )Can apply the onstrution above. 18



The Hermitian urve over F4
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CL(D;mQ)'s module struture� : (X : Y : Z) 7! (�X : Y : Z) permutesthe aÆne F4-rational points in 4 orbits, two oflength 3, and two of length 1:O1 = f(1 : � : 1); (� : � : 1); (�2 : � : 1)gO2 = f(1 : �2 : 1); (� : �2 : 1); (�2 : �2 : 1)gO3 = f(0 : 0 : 1)gO4 = f(0 : � : 1)g
Similar patterns for any F q2: Under � thereare q orbits of length q2 � 1 (all oordinatesnonzero), one of length q � 1 (X = 0, Y 6= 0),and one of length 1 (f(0 : 0 : 1)g)
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The ode CL(D;3Q)The aÆne oordinate funtions x = X=Z andy = Y=Z are elements of L(3Q), as is 1 = Z=Z.Hene, if we order the F4-rational points on Hin one partiular way, the ode CL(D;3Q) isthe span of the rows of the matrix:
0B�1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �2

1CA
Can be seen that this ode has parameters[n; k; d℄ = [8;3;5℄ over F4 (best possible for thisn; k).
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Gr�obner basisThe redued POT Gr�obner basis for the or-responding submodule of F4[t℄4 is:
g1 = (t+ �; t+ �;�2; �2)g2 = (0; t2+ t+1; �; �2)g3 = (0;0; t� 1;0)g4 = (0;0;0; t� 1)

� Information positions: t2e1, te1, t2e2.
� Parity heks: e1 ,te2, e2, e3, e4.
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Order funtionsH�holdt, van Lint, and Pellikaan (building on alot of previous work) introdued the followingidea:Def. Let R be a F q-algebra. Let (�;+;�)be a well-ordered semigroup. An order, orweight, funtion is a surjetive mapping � :R! f�1g [ � satisfying:
1. �(f) = �1, f = 0
2. �(f) = �(f) for all f 2 R, all  6= 0 in F q3. �(f + g) �max�f�(f); �(g)g4. if �(f) = �(g) 6= �1, then 9  6= 0 in Fqsuh that �(f � g) � �(f)
5. �(fg) = �(f) + �(g) 23



First properties
� Axioms 1 and 5 imply that R must be adomain; a ring with an order funtion isalled an order domain.
� Let K = QF (R).
� From now on, restrit to ase � a sub-semigroup of Zr�0, some r � 1, so �nitelygenerated.
� Then WLOG, may assume r = tr:deg:Fq(K).
� \order" refers to the ordered F q basis of Rwith distint �-values guaranteed by axiom4 24



Examples
� Let X be a smooth urve, Q 2 X. R =L(1Q) is an order domain with � = Weier-strass semigroup of X at Q, �(f) = �vQ(f),i.e. the pole order at Q. (Goppa)
� R = Fq[X1; : : : ; Xr℄ is an order domain tak-ing � = Zr�0, � a monomial order, �(f) = �if LT�(f) = X� for f 6= 0. (Reed-Muller)
� Many other ways to produe order domainsfrom virtually any algebrai variety (of dim� 1), onnetions with theory of valuationson funtion �elds.
� Can also onstrut order domains with agiven �. 25



Examples, ontinued
� Consider � = h(0;2); (1;1); (3;0)i � Z2�0
� 3 generators for � ) a surjetive ring ho-momorphism:� : Fq[X; Y; Z℄! R;where �(X) = x, et. and �(x) = (0;2),�(y) = (1;1), �(z) = (3;0).
� All relations between �(x), �(y),�(z) gen-erated by �(x3z2) = �(y6)
� Must have �(y6 � x3z2) < �(y6) for some 6= 0. ) R �= Fq[X; Y;Z℄=I, where I = hF i,F = Y 6 � X3Z2+ lower order terms26



An extrinsi haraterizationCan hek all suh R are order domains (and alldeformations of the monomial algebra Fq[�℄ =Fq[v2; uv; u3℄ �= Fq[X; Y;Z℄=hY 6 � X3Z2i). Ingeneral,Theorem 2 (Geil-Pellikaan) Let R be an orderdomain with a given �nitely-generated valuesemigroup � � Zr�0. LetR� = Fq[�℄ �= F q[X1; : : : ; Xs℄=I�be the \tori" algebra assoiated to � (I� is atori ideal { generated by di�erenes of mono-mials). Then R has a at deformation to R�oming from a presentation of R similar to ourlast example above.
27



Codes from order domainsTo onstrut odes from an order domain R =Fq[X1; : : : ; Xs℄=I, generalize Goppa's onstru-tion:
� Let � be the ordered basis of R (orderedby � value) given by the monomials in om-plement of LT>(I)
� Let XR = V (I), and XR(F q) = fP1; : : : ; Pngbe the set of Fq-rational points on XR
� Let V` be the span of the �rst ` elementsof �
� Let ev : R! Fnq : ev(f) = (f(P1); : : : ; f(Pn))
� Get odes E` = ev(V`), C` = Ev?̀. 28



Final example { Hermitian sur-fae odes
� Consider the Hermitian surfae:H = V (Xq+10 +Xq+11 +Xq+12 �Xq+13 )in P3 over the �eld Fq2.
� H has (q2+1)(q3+1) F q2-rational points.� Can introdue a linear hange of oordi-nates to put a tangent plane to the surfaeas the plane at in�nity.
� A tangent plane meets H in reduible urvemade up of q+1 onurrent lines.
� ) aÆne surfae is H0 = V (Xq+1+ Y q+1�Zq � Z), and has q5 Fq2-rational points.29



Hermitian surfae odes
� Can hek the aÆne oordinate ring alsohas an order domain struture.
� Have many automorphisms, e.g.� : (X; Y;Z) 7! (�X;�Y; �q+1Z)(order = q2 � 1)
� � �xes plane at in�nity and permutes theq5 aÆne Fq2-rational points on the surfaein q3 + q orbits of size q2 � 1, one of sizeq � 1, and one of size 1.
� Could also use� : (X; Y; Z) 7! (�Y; �X;�q+1Z)(higher order if q even). 30



Hermitian surfae odes, ontin-ued
� For instane, the ode from the Hermitiansurfae over F4 onstruted by evaluating1; X; Y;Z has [n; k; d℄ = [32;4;22℄
� Minimum weight odeword omes by eval-uating a linear polynomial whih de�nesthe tangent plane at one of the F q2-rationalpoints on the surfae.
� Equals best possible n = 32, k = 4 odeover F4 (Brouwer's table).
� But also have Gr�obner basis enoding, gooddeoding, et. for this ode beause of theextra struture(!) 31



Comment
� Ironially, when order domains were intro-dued by H�holdt, van Lint, and Pellikaan,their goal was to \take the (hard) alge-brai geometry out of the theory of Goppaodes" (!)
� As it turns out, their synthesis of that the-ory has made it possible to use even moreommutative algebra and algebrai geome-try to onstrut new examples of error on-trol odes, generalize the existing deodingalgorithms, et.
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