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x1. Some motivation
� To use a 
ode in pra
ti
e, must have eÆ-
ient en
oding and de
oding algorithms.
� For en
oding a linear blo
k 
ode, knowinga generator matrix suÆ
es.
� But for \large" 
odes (large n and k, overlarge �elds), a full generator matrix G 
anrequire a large amount of storage spa
e.
� Can we do better?
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Cy
li
 
odes
� When our 
ode has some additional stru
-ture, often, yes.
� Say C is 
y
li
 of blo
k-length n over Fq(key example { the Reed-Solomon 
odesRS(k; q) with n= q � 1).
� Standard fa
t: Representing 
ode words aspolynomials modulo xn�1, C 
an be viewedas an ideal C � Fq[x℄=hxn � 1i.
� PID property of Fq[x℄ ) C is generated bysome g(x) of degree � n� 1.
� , C has a generator matrix G whose rowsare all 
y
li
 shifts of the ve
tor of 
oeÆ-
ients of g(x), so we 
an repla
e full G byone of its rows without loss of information.3



Cy
li
 
odes, 
ontinued
� To en
ode in this setting, we 
an use thefollowing pro
edure: Information positionsare the 
oeÆ
ients of tn�k; : : : ; xn�1, andthe parity 
he
ks are the 
oeÆ
ients of1; x; : : : ; xn�k�1.Input: g(x), generator poly for Cinformation symbols 
n�k; : : : ; 
n�1Output: y, a 
odewordp := 
n�kxn�k + � � �+ 
n�1xn�1;y := p�Rem(p; g; x);
� As usual, p�Rem(p; g; x) is divisible by g(x),hen
e an element of the ideal C.
� Sin
e g has degree n� k, Rem(p; g; x) 
on-tains only terms in 1; x; : : : ; xn�k�1. Theother terms will be the same as in p ) thisis a \systemati
" en
oding method. 4



x2. Automorphisms and modulestru
turesGeneralizing the 
y
li
 
ase, 
onsider any linearblo
k 
ode C with a 
y
li
 group G = h�i ofautomorphisms (C is \quasi
y
li
").
� Let Oi, i = 1; : : : ; r be the orbits of the
omponents of 
odewords under �.
� For example, if n = 8, and � = right 
y
li
shift by two positions:� : (x1; x2; x3 : : : ; x8) 7! (x7; x8; x1; : : : ; x6)is an automorphism of a 
ode, then thereare two orbits: O1 = the odd-numberedpositions and O2 = the even-numbered po-sitions.
� By general fa
ts on group a
tions, jOij j jGjall i. 5



The module stru
ture
� Pi
k any xi;0 in ith orbit and relabel the or-bit as xi;j, j = 0; : : : ; jOij�1, where �(xi;j) =xi;j+1 mod jOij.
� Constru
t ' : C ! Fq[t℄r by(xi;j) 7! rXi=1(jOij�1Xj=0 xi;jtj)ei
� For example if x 2 C, n = 8 whi
h has� = double right 
y
li
 shift as an auto-morphism, taking x1;0 = x1 and x2;0 = x2,we have�(x) = (x1+ x3t+ x5t2+ x7t3;x2+ x4t+ x6t2+ x8t3) 6



The module stru
ture, 
ontin-ued
� '(C) is 
losed under sums if C is linear.
� t � '(x), followed by \division by tjOij� 1 inthe ith 
omponent," gives '(�(x)).
� In example,t � '(x) = (x1t+ � � �+ x7t4; x2t+ � � �+ x8t4)� (x7+ � � �+ x5t3; x8+ � � �+ x6t3)= '(�(x))
� Let � : Fq[t℄r ! Fq[t℄r=O, where O = h(tjOij�1)ei : i = 1; : : : ; ri. Then �('(C)) is 
losedunder multipli
ation by t, hen
e by any poly-nomial. 7



Formal statementWe have sket
hed the proof of:Theorem 1 Any linear blo
k 
ode C over Fqwith a 
y
li
 group G of automorphisms hasthe stru
ture of a module over the ring F q[t℄(a submodule ofFq[t℄r=h(tjOij � 1)ei : i = 1; : : : ; ri;where r;Oi as above).(Can also be generalized to non-
y
li
 groupsG; the 
orresponding statement is that the
ode 
an be viewed as a submodule of a freemodule over the group algebra Fq[G℄.)We'll see some interesting examples later.
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x3. Gr�obner bases for modules
� A useful tool for studying these modulestru
tures on 
odes is provided by the the-ory of Gr�obner bases for modules over poly-nomial rings S { theory for ideals 
an beseen as a spe
ial 
ase.
� We will only use the 
ase of S = Fq[t℄ whi
his somewhat simpler; 
onsult referen
es forgeneral theory.
� A monomial m in M = Fq[t℄r is an elementof the form m = tiej, where ej is the jthstandard basis ve
tor in M .
� A monomial ordering is a total ordering >on the 
olle
tion of monomials that satis-�es tiej > ej for all j and all i > 0, andis 
ompatible with the module stru
ture:m1 > m2 ) tim1 > tim2, all i. 9



Some examples of monomial or-ders
� First order the ej themselves; we'll usee1 > e2 > � � � > er(opposite is also possible and is used too).
� The position over term (or POT) orderingon Fq[t℄r: tiej >POT tke`if j < `, or j = ` and i > k.
� The term over position (or TOP) orderingon Fq[t℄r: tiej >TOP tke`if i > k, or i= k and j < `. 10



Another exampleIn his Gr�obner basis des
ription of Reed-Solomonde
oding algorithms, Fitzpatri
k uses anotherorder >s on Fq[t℄2. Pi
k s 2 Z. Then >s isde�ned by tiej >s tke` if j = ` and i > k andtie2 >3 tke1 if i+ s � k (and opposite order ifnot).For instan
e, with s = 3:e1 <3 te1 <3 t2e1 < t3e1 <3 e2 <3 t4e1 <3 : : :
(Whether e1 >s e2 or e1 <s e2 depends on signof s 2 Z here.)

11



\Gr�obner basi
s"
� Given a monomial order >, every f 2 Fq[t℄rhas a unique leading term LT>(f).
� There is a division, or normal form algo-rithm generalizing the algorithm for poly-nomials.
� For any nonzero submodule M � Fq[t℄r,have LT>(M), the submodule generated byall leading terms of elements of M .
� A Gr�obner basis G for M w.r.t. > is a setG �M su
h that the LT>(g) for g 2 G gen-erate the leading term submodule LT>(M).
� Have general Bu
hberger algorithm for 
om-puting Gr�obner bases in this setting. 12



Gr�obner basis of a 
odeGiven a 
ode C as in Prop 1, we 
onsider the
orresponding submodule of Fq[t℄r, that is thesubmoduleM(C) = h'(C)i+ h(tjOij � 1)ei : i= 1; : : : ; ri
A Gr�obner basis forM(C) will be 
alled a Gr�obnerbasis for the 
ode.\Toy example": Consider the 
ode C over F2with generator matrix

G = 0B�1 0 0 0 1 0 0 00 0 1 0 0 0 1 00 1 0 1 0 1 0 1
1CANote C is 
losed under � = right double 
y
li
shift.
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\Toy example," 
ontinued
� With orbits O1; O2 as before, the rows ofG 
orrespond to module elementsg1 = (1+ t2)e1;g2 = (t+ t3)e1 = tg1;g3 = (1+ t+ t2+ t3)e2:
� M(C) = hg1; g2; g3i+h(t4+1)e1; (t4+1)e2i.
� With respe
t to POT order, G = fg1; g3gis a Gr�obner basis of C, sin
e (t4+1)e1 =(t2+1)g1 and (t4+1)e2 = (t+1)g3.
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Gr�obner basis en
odingWhen Proposition 1 holds, 
an use a Gr�obnerbasis G for C (any monomial order) to en
ode:
� Information positions are the 
oeÆ
ientsof the non-standard monomials (i.e. el-ements of LT>(M(C)) of form tjei withj � jOij � 1)
� Parity 
he
k positions are the standard mono-mials (i.e. in 
omplement of LT>(M(C)))
� To en
ode a word 
, form the linear 
om-bination f = P 
imi (mi the non-standardmonomials), then
� Compute x = f � fG (where fG is the re-mainder on division by G.
� ) x 2M(C). 15



x4. AG Goppa 
odes and 
odesfrom order domainsOur general 
onstru
tions apply to many in-teresting 
odes, e.g. some AG Goppa 
odes.
� Start with a smooth proje
tive algebrai

urve X � Pn de�ned over Fq (preferablywith \many" Fq-rational points).
� Let G and D = P1 + : : :+ Pn be e�e
tivedivisors on X, sums of Fq-rational points,w/ disjoint supports. Take L(G) = ff 2Fq(X) : (f) +G � 0g [ f0g.
� De�neev : L(G) ! Fnqf 7! (f(P1); : : : ; f(Pn))Let C = CL(D;G) = im(ev) � Fnq . 16



Observations
� Can take G= mQ and D = sum of all otherFq-rational points to maximize jGj (givesthe 
lass of \one-point Goppa 
odes")
� Many interesting 
urves that have lots ofFq-rational points also have many automor-phisms �xing G = mQ and D.
� Any su
h automorphism indu
es an auto-morphism of the 
ode CL(D;mQ).
� We 
an take � = any su
h automorphismand use G= h�i.
� ) su
h 
odes have F q[t℄-module stru
tures,and Gr�obner basis en
oding. 17



Hermitian 
urve 
odes
� Let � be a primitive element of Fq2.� Consider the Hermitian 
urve over Fq2 {H = V (Xq+1 � Y qZ � Y Zq) � P2.
� H has q3 + 1 Fq-rational points: q3 aÆnepoints: q on ea
h line X = 
Z and Q = (0 :1 : 0) at in�nity.
� This is the maximum possible for a 
urveof genus g = q(q � 1)=2 over Fq2, by theHasse-Weil bound: jC(Fq2)j � 1+ q2+2gq:
� Let � : (X : Y : Z) 7! (�X : �q+1Y : Z),then � is an auto. of H �xing Q and per-muting the q3 aÆne Fq2-rational points. )Can apply the 
onstru
tion above. 18



The Hermitian 
urve over F4
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CL(D;mQ)'s module stru
ture� : (X : Y : Z) 7! (�X : Y : Z) permutesthe aÆne F4-rational points in 4 orbits, two oflength 3, and two of length 1:O1 = f(1 : � : 1); (� : � : 1); (�2 : � : 1)gO2 = f(1 : �2 : 1); (� : �2 : 1); (�2 : �2 : 1)gO3 = f(0 : 0 : 1)gO4 = f(0 : � : 1)g
Similar patterns for any F q2: Under � thereare q orbits of length q2 � 1 (all 
oordinatesnonzero), one of length q � 1 (X = 0, Y 6= 0),and one of length 1 (f(0 : 0 : 1)g)
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The 
ode CL(D;3Q)The aÆne 
oordinate fun
tions x = X=Z andy = Y=Z are elements of L(3Q), as is 1 = Z=Z.Hen
e, if we order the F4-rational points on Hin one parti
ular way, the 
ode CL(D;3Q) isthe span of the rows of the matrix:
0B�1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �2

1CA
Can be seen that this 
ode has parameters[n; k; d℄ = [8;3;5℄ over F4 (best possible for thisn; k).
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Gr�obner basisThe redu
ed POT Gr�obner basis for the 
or-responding submodule of F4[t℄4 is:
g1 = (t+ �; t+ �;�2; �2)g2 = (0; t2+ t+1; �; �2)g3 = (0;0; t� 1;0)g4 = (0;0;0; t� 1)

� Information positions: t2e1, te1, t2e2.
� Parity 
he
ks: e1 ,te2, e2, e3, e4.
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Order fun
tionsH�holdt, van Lint, and Pellikaan (building on alot of previous work) introdu
ed the followingidea:Def. Let R be a F q-algebra. Let (�;+;�)be a well-ordered semigroup. An order, orweight, fun
tion is a surje
tive mapping � :R! f�1g [ � satisfying:
1. �(f) = �1, f = 0
2. �(
f) = �(f) for all f 2 R, all 
 6= 0 in F q3. �(f + g) �max�f�(f); �(g)g4. if �(f) = �(g) 6= �1, then 9 
 6= 0 in Fqsu
h that �(f � 
g) � �(f)
5. �(fg) = �(f) + �(g) 23



First properties
� Axioms 1 and 5 imply that R must be adomain; a ring with an order fun
tion is
alled an order domain.
� Let K = QF (R).
� From now on, restri
t to 
ase � a sub-semigroup of Zr�0, some r � 1, so �nitelygenerated.
� Then WLOG, may assume r = tr:deg:Fq(K).
� \order" refers to the ordered F q basis of Rwith distin
t �-values guaranteed by axiom4 24



Examples
� Let X be a smooth 
urve, Q 2 X. R =L(1Q) is an order domain with � = Weier-strass semigroup of X at Q, �(f) = �vQ(f),i.e. the pole order at Q. (Goppa)
� R = Fq[X1; : : : ; Xr℄ is an order domain tak-ing � = Zr�0, � a monomial order, �(f) = �if LT�(f) = X� for f 6= 0. (Reed-Muller)
� Many other ways to produ
e order domainsfrom virtually any algebrai
 variety (of dim� 1), 
onne
tions with theory of valuationson fun
tion �elds.
� Can also 
onstru
t order domains with agiven �. 25



Examples, 
ontinued
� Consider � = h(0;2); (1;1); (3;0)i � Z2�0
� 3 generators for � ) a surje
tive ring ho-momorphism:� : Fq[X; Y; Z℄! R;where �(X) = x, et
. and �(x) = (0;2),�(y) = (1;1), �(z) = (3;0).
� All relations between �(x), �(y),�(z) gen-erated by �(x3z2) = �(y6)
� Must have �(y6 � 
x3z2) < �(y6) for some
 6= 0. ) R �= Fq[X; Y;Z℄=I, where I = hF i,F = Y 6 � 
X3Z2+ lower order terms26



An extrinsi
 
hara
terizationCan 
he
k all su
h R are order domains (and alldeformations of the monomial algebra Fq[�℄ =Fq[v2; uv; u3℄ �= Fq[X; Y;Z℄=hY 6 � X3Z2i). Ingeneral,Theorem 2 (Geil-Pellikaan) Let R be an orderdomain with a given �nitely-generated valuesemigroup � � Zr�0. LetR� = Fq[�℄ �= F q[X1; : : : ; Xs℄=I�be the \tori
" algebra asso
iated to � (I� is atori
 ideal { generated by di�eren
es of mono-mials). Then R has a 
at deformation to R�
oming from a presentation of R similar to ourlast example above.
27



Codes from order domainsTo 
onstru
t 
odes from an order domain R =Fq[X1; : : : ; Xs℄=I, generalize Goppa's 
onstru
-tion:
� Let � be the ordered basis of R (orderedby � value) given by the monomials in 
om-plement of LT>(I)
� Let XR = V (I), and XR(F q) = fP1; : : : ; Pngbe the set of Fq-rational points on XR
� Let V` be the span of the �rst ` elementsof �
� Let ev : R! Fnq : ev(f) = (f(P1); : : : ; f(Pn))
� Get 
odes E` = ev(V`), C` = Ev?̀. 28



Final example { Hermitian sur-fa
e 
odes
� Consider the Hermitian surfa
e:H = V (Xq+10 +Xq+11 +Xq+12 �Xq+13 )in P3 over the �eld Fq2.
� H has (q2+1)(q3+1) F q2-rational points.� Can introdu
e a linear 
hange of 
oordi-nates to put a tangent plane to the surfa
eas the plane at in�nity.
� A tangent plane meets H in redu
ible 
urvemade up of q+1 
on
urrent lines.
� ) aÆne surfa
e is H0 = V (Xq+1+ Y q+1�Zq � Z), and has q5 Fq2-rational points.29



Hermitian surfa
e 
odes
� Can 
he
k the aÆne 
oordinate ring alsohas an order domain stru
ture.
� Have many automorphisms, e.g.� : (X; Y;Z) 7! (�X;�Y; �q+1Z)(order = q2 � 1)
� � �xes plane at in�nity and permutes theq5 aÆne Fq2-rational points on the surfa
ein q3 + q orbits of size q2 � 1, one of sizeq � 1, and one of size 1.
� Could also use� : (X; Y; Z) 7! (�Y; �X;�q+1Z)(higher order if q even). 30



Hermitian surfa
e 
odes, 
ontin-ued
� For instan
e, the 
ode from the Hermitiansurfa
e over F4 
onstru
ted by evaluating1; X; Y;Z has [n; k; d℄ = [32;4;22℄
� Minimum weight 
odeword 
omes by eval-uating a linear polynomial whi
h de�nesthe tangent plane at one of the F q2-rationalpoints on the surfa
e.
� Equals best possible n = 32, k = 4 
odeover F4 (Brouwer's table).
� But also have Gr�obner basis en
oding, goodde
oding, et
. for this 
ode be
ause of theextra stru
ture(!) 31



Comment
� Ironi
ally, when order domains were intro-du
ed by H�holdt, van Lint, and Pellikaan,their goal was to \take the (hard) alge-brai
 geometry out of the theory of Goppa
odes" (!)
� As it turns out, their synthesis of that the-ory has made it possible to use even more
ommutative algebra and algebrai
 geome-try to 
onstru
t new examples of error 
on-trol 
odes, generalize the existing de
odingalgorithms, et
.
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